Высота ВК к стороне АД, пересекает прямую с АС в точке Н. Косинус угла ВНО равен 0,8. ΔНОВ - прямоугольный (<НОВ- прямой, т.к. диагонали ромба перпендикулярны). Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Значит НВ=2R=2*2.5=5. НО=НВ*соs<BHO=5*0.8=4 ВО=√HB²-HO²=√25-16=√9=3 Тогда диагональ ромба ВД=2ВО=6 (диагонали ромба в точке пересечения делятся пополам ВО=ОД, АО=ОС)) Рассмотрим прямоугольные ΔНКА и ΔДОА: у них <НАК=<ДАО (вертикальные), <НКА=<ДОА=90°, значит эти треугольники подобны по 1 признаку. НА/АД=НК/ОД=КА/АО Из ΔНКА НК=НА*соs<BHO=0,8НА Подставляем: НА/АД=0,8НА/3 АД=3/0,8=3,75 АО=√(АД²-ОД²)=√(3,75²-3²)=√5,0625=2,25 АС=2АО=2*2,25=4,5 Площадь ромба S=АC*ВД/2 2S=АС*ВД=4,5*6=27 ответ: 27
Точка О - точка пересечения высот АР и СQ. Рассмотрим прямоугольные ΔАQO и ΔCPO: у них <АQO=<CPO=90° (по условию), <АОQ=<CОР (вертикальные), значит <QАO=<РСO. Прямоугольные ΔAРВ и ΔСQB подобны по 1 признаку (по 2 углам <В- общий, <ВАР=<ВСQ), значит ВР/ВQ=АВ/ВС или АВ/ВР=ВС/ВQ. Исходя из этого ΔАВС подобен ΔРВQ по 2 признаку (по двум сторонам АВ/ВР=ВС/ВQ и углу между ними <В- общий). Т.к. ΔАВС остроугольный, то <В меньше 90°. Тогда из прямоугольного ΔАРВ находим коэффициент подобия k=BP/AB=cos B. Отношение периметров подобных треугольников равно коэффициенту подобия: Равс/Ррвq=15/9=5/3.Тогда cos B=3/5. У подобных треугольников отношение радиусов или диаметров описанных окружностей равно коэффициенту подобия, значит радиусы Rрвq/Rавc=3/5 Rавc=5Rрвq/3=5*9/5*3=3. Исходя из формулы радиуса описанной окружности Rавc=АС/2sin B, найдем АС=Rавc*2sin B=Rавc*2 √(1-соs² B)=3*2*√(1-9/25)=3*2*4/5=4,8 ответ: 4,8
ΔНОВ - прямоугольный (<НОВ- прямой, т.к. диагонали ромба перпендикулярны). Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Значит НВ=2R=2*2.5=5.
НО=НВ*соs<BHO=5*0.8=4
ВО=√HB²-HO²=√25-16=√9=3
Тогда диагональ ромба ВД=2ВО=6 (диагонали ромба в точке пересечения делятся пополам ВО=ОД, АО=ОС))
Рассмотрим прямоугольные ΔНКА и ΔДОА: у них <НАК=<ДАО (вертикальные), <НКА=<ДОА=90°, значит эти треугольники подобны по 1 признаку.
НА/АД=НК/ОД=КА/АО
Из ΔНКА НК=НА*соs<BHO=0,8НА
Подставляем:
НА/АД=0,8НА/3
АД=3/0,8=3,75
АО=√(АД²-ОД²)=√(3,75²-3²)=√5,0625=2,25
АС=2АО=2*2,25=4,5
Площадь ромба S=АC*ВД/2
2S=АС*ВД=4,5*6=27
ответ: 27
Рассмотрим прямоугольные ΔАQO и ΔCPO: у них <АQO=<CPO=90° (по условию), <АОQ=<CОР (вертикальные), значит <QАO=<РСO.
Прямоугольные ΔAРВ и ΔСQB подобны по 1 признаку (по 2 углам <В- общий, <ВАР=<ВСQ), значит ВР/ВQ=АВ/ВС или АВ/ВР=ВС/ВQ.
Исходя из этого ΔАВС подобен ΔРВQ по 2 признаку (по двум сторонам АВ/ВР=ВС/ВQ и углу между ними <В- общий). Т.к. ΔАВС остроугольный, то <В меньше 90°. Тогда из прямоугольного ΔАРВ находим коэффициент подобия k=BP/AB=cos B.
Отношение периметров подобных треугольников равно коэффициенту подобия: Равс/Ррвq=15/9=5/3.Тогда cos B=3/5.
У подобных треугольников отношение радиусов или диаметров описанных окружностей равно коэффициенту подобия, значит радиусы Rрвq/Rавc=3/5
Rавc=5Rрвq/3=5*9/5*3=3.
Исходя из формулы радиуса описанной окружности Rавc=АС/2sin B, найдем АС=Rавc*2sin B=Rавc*2 √(1-соs² B)=3*2*√(1-9/25)=3*2*4/5=4,8
ответ: 4,8