АД - диаметр, так как окружность в точке Д касается СД.
Отсюда следует, что треугольник АРД - прямоугольный.
Имеем 2 подобных треугольника: АРД и АВС.
Пусть ВС = х, РД = у.
Составим систему уравнений:
{х/АВ = АР/у,
{х² + РД² = АД² = ВС².
Подставим известные данные.
{(х/(9√10)) = 3/у,
{х² = 9 + у².
Из второго уравнения х = √(9 + у²).
Первое уравнение получится таким:
у*(√(9 + у²)) = 27√10.
Возведём обе части в квадрат и получим биквадратное уравнение:
y^4 + 9y^2 - 27²*10 = 0. Делаем замену: y² = z.
z² + 9z - 7290 = 0.
Находим дискриминант:
D=9^2-4*1*(-7290)=81-4*(-7290)=81-(-4*7290)=81-(-29160)=81+29160=29241;
Дискриминант больше 0, уравнение имеет 2 корня:
z_1=(2root29241-9)/(2*1)=(171-9)/2=162/2=81;
z_2=(-2root29241-9)/(2*1)=(-171-9)/2=-180/2=-90.
Обратная замена (отрицательное значение отбрасываем - из него корень не извлекается).
y = √81 = ±9.
Для длины принимаем положительное значение.
ответ: ДР = у = 9.
АД - диаметр, так как окружность в точке Д касается СД.
Отсюда следует, что треугольник АРД - прямоугольный.
Имеем 2 подобных треугольника: АРД и АВС.
Пусть ВС = х, РД = у.
Составим систему уравнений:
{х/АВ = АР/у,
{х² + РД² = АД² = ВС².
Подставим известные данные.
{(х/(9√10)) = 3/у,
{х² = 9 + у².
Из второго уравнения х = √(9 + у²).
Первое уравнение получится таким:
у*(√(9 + у²)) = 27√10.
Возведём обе части в квадрат и получим биквадратное уравнение:
y^4 + 9y^2 - 27²*10 = 0. Делаем замену: y² = z.
z² + 9z - 7290 = 0.
Находим дискриминант:
D=9^2-4*1*(-7290)=81-4*(-7290)=81-(-4*7290)=81-(-29160)=81+29160=29241;
Дискриминант больше 0, уравнение имеет 2 корня:
z_1=(2root29241-9)/(2*1)=(171-9)/2=162/2=81;
z_2=(-2root29241-9)/(2*1)=(-171-9)/2=-180/2=-90.
Обратная замена (отрицательное значение отбрасываем - из него корень не извлекается).
y = √81 = ±9.
Для длины принимаем положительное значение.
ответ: ДР = у = 9.
Углы квадрата равны 90°, углы правильного треугольника 60°.⇒
угол МDС=90°-60°=30°
Т.к. ∆ СКD по условию равносторонний, ∠МDС+∠СDК=30°+60°=90°.
МD=СD=DК ( по условию). ⇒ ∆ МDК - прямоугольный равнобедренный, ⇒ ∠КМD=∠DKM=45°.
В равнобедренном ∆ ВАМ ∠ ВАМ=30°,⇒ из суммы углов треугольника углы при основании ВМ содержат по 75°.
Сумма углов ВМА+АМD+DМК=75°+60°+45°=180°. Следовательно, угол ВМК - развернутый, и точки В, М и К лежат на одной прямой, что и требовалось доказать.