Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Пусть точка вне плоскости М.
Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Значит НВ = АВ:2 = 6см
Получился прямоугольный треугольник МВН: гипотенуза МВ = 10см,
катет НВ = 6см и катет МН, который нужно найти.
Теорема Пифагора
МН² = МВ² - НВ² = 100 - 36 = 64 = 8²
ответ: расстояние от точки до плоскости 8 см
Объяснение:
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED^2=CD^2−CE^2
ED^2=(13)^2−(5)^2
ED=√(13)^2−(5)^2
ED= 12 см
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD
BC=FE, пусть BC=x, тогда
x+12+x+12=13+13
x=1
BC=1 см, AD=12+1+12=25 см.
Площадь трапеции S=(BC+AD)/2⋅EC=(1+25)/2⋅5=65 см^2.