Сторона основания m, диагональ основания m√2 Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2. tg (α/2) = (m√2/2) / H а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2 б) Боковое ребро b = (m√2/2) / sin (α/2) в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2 L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2) Угол между боковой гранью и плоскостью основания sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α)) г) Двугранный угол при боковом ребре - это не знаю.
Усеченная пирамида АВСА1В1С1, в основаниях правильные треугольники АВС и А1В1С1, АС=7, А1С1=5, ОО1-высота пирамиды, О и О1 -центры треугольников, - пересечение высот=медиан=биссектрис, проводим высоты ВН и В1Н1, проводим апофему Н1Н, треугольник АВС, ВН=АС*корень3/2=7*корень3/2, треугольник А1В1С1, В1Н1=А1С1*корень3/2=5*корень3/2, при пересечении медианы делятся в отношении 2/1 начиная от вершины, ВО=2/3ВН=(2/3)*((7*корень3/2)=7*корень3/3, ОН=1/3ВН=(1/3)*(7*корень3/2)=7*корень3/6, треугольник А1В1С1, В1О1=2/3*В1Н1=(2/3)*(5*корень3/2)=5*корень3/3, О1Н1=1/2В1Н1=(1/3)*(5*корень3/2)=5*корень3/6, прямоугольная трапеция О1В1ВО, уголВ1ВО=45, проводим высоту В1К на ВО, ОО1В1К прямоугольник ОК=О1В1=5*корень3/3, КВ=ВО-ОК=7*корень3/3-5*корень3/3=2*корень3/3, треугольник КВ1В равнобедренный, угол КВ1В=90-45=45, КВ=В1К=О1О=2*корень3/3, рассматриваем прямоугольную трапецию О1ОНН1, проводим высоту Н1Т на ОН, ТН1О1О прямоугольник О1О=Н1Т=2*корень3/3, О1Н1=ОТ=5*корень3/6, НТ=ОН-ОТ=7*корень3/6-5*корень3/6=2*корень3/6, треугольник Н1Нт прямоугольный, Н1Н=корень(Н1Т в квадрате+НТ в квадрате)=корень(12/9+12/36)=корень(5/3), площадь боковой=1/2(периметрАВС+преиметрА1В1С1)*Н1Н=1/2*(3*7+3*5)*корень(5/3)=18*корень(5/3)=6*корень15
Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2.
tg (α/2) = (m√2/2) / H
а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2
б) Боковое ребро b = (m√2/2) / sin (α/2)
в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2
L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2)
Угол между боковой гранью и плоскостью основания
sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α))
г) Двугранный угол при боковом ребре - это не знаю.