Смежные и вертикальные углы. Перпендикулярные прямые
Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. углы АОВ и ВОС смежные.
Геометрия ГИА, Сумма смежных углов равна 180°
Сумма смежных углов равна 180°
Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .
Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.
Геометрия ГИА, Вертикальные углы равны
Вертикальные углы равны
Рис.2
Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).
Теорема 2. Вертикальные углы равны.
Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.
Отсюда заключаем, что ∠ АОВ = ∠ COD.
Следствие 1. Угол, смежный с прямым углом, есть прямой угол.
Геометрия ГИА, Прямые АС и BD перпендикулярные
Рис.3
Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.
Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.
Геометрия ГИА, АН — перпендикуляр к прямой
АН — перпендикуляр к прямой
Рис.4
Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.
Геометрия ГИА, Чертежный угольник
Чертежный угольник
Рис.5
Справедлива следующая теорема.
Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).
Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.
Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».
Доброго дня, дорогі діти . Пропоную вам тести по темі Жанри камерно-інструментальної музики. 1. П’єса навчального характеру, в якій застосовується певний технічний прийом гри, або невеликий музичний твір віртуозного характеру: а) ноктюрн б) соната в) симфонія г) етюд 2. Лірична наспівна мелодична п’єса, зміст якої пов’язаний з художніми образами ночі: а) ноктюрн б) скерцо в) варіації 3. Вправа для голосу без тексту, що виконується на будь-який голосний, з назвами нот або складів, а також художній твір для голосу, написаний у такій формі: а) пісня б) вокаліз 4. Частина симфонії, сонати, чи самостійний музичний твір у жвавому, стрімкому темпі: а) прелюдія б) скерцо в) рондо 5. . Музика. створена для виконання на музичних інструментах сольно, або малим складом виконавців у невеликих приміщеннях, або для домашнього музикування: а) камерно-інструментальна б) камерно-вокальна в) симфонічна 6.Головну тему в "Скерцо" Й.С.Баха виконує...
Объяснение:
Смежные и вертикальные углы. Перпендикулярные прямые
Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. углы АОВ и ВОС смежные.
Геометрия ГИА, Сумма смежных углов равна 180°
Сумма смежных углов равна 180°
Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .
Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.
Геометрия ГИА, Вертикальные углы равны
Вертикальные углы равны
Рис.2
Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).
Теорема 2. Вертикальные углы равны.
Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.
Отсюда заключаем, что ∠ АОВ = ∠ COD.
Следствие 1. Угол, смежный с прямым углом, есть прямой угол.
Геометрия ГИА, Прямые АС и BD перпендикулярные
Рис.3
Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.
Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.
Геометрия ГИА, АН — перпендикуляр к прямой
АН — перпендикуляр к прямой
Рис.4
Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.
Геометрия ГИА, Чертежный угольник
Чертежный угольник
Рис.5
Справедлива следующая теорема.
Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).
Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.
Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».
невеликий музичний твір віртуозного характеру:
а) ноктюрн б) соната
в) симфонія г) етюд 2. Лірична наспівна мелодична п’єса, зміст якої пов’язаний з художніми образами ночі:
а) ноктюрн б) скерцо
в) варіації 3. Вправа для голосу без тексту, що виконується на будь-який голосний, з назвами нот або
складів, а також художній твір для голосу, написаний у такій формі:
а) пісня б) вокаліз 4. Частина симфонії, сонати, чи самостійний музичний твір у жвавому, стрімкому темпі:
а) прелюдія б) скерцо
в) рондо
5. . Музика. створена для виконання на музичних інструментах сольно, або малим складом
виконавців у невеликих приміщеннях, або для домашнього музикування:
а) камерно-інструментальна б) камерно-вокальна
в) симфонічна
6.Головну тему в "Скерцо" Й.С.Баха виконує...
варіанти відповідей
а) скрипка
б) флейта
в) клавесин відповіді запишіть у зошити .