Здравствуйте дорогие пользователи сайта!Нужна ваша решить задачи по теме "Четырехугольники". Задачи прикреплены на фотографиях.Если ,я вам довольно неплохо заплачу в виде .
В квадрате АВСD точка К - середина стороны ВС, точка М - серидина стороны АВ. Докажите, что прямые АК и МД перпендикулярны, а треугольники АЕМ (Е - точка пересечения прямых АК и МД) и АВК подобны. Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними. Угол CND=углу АМD, угол АDМ=NCD Сумма углов ADM и АМD равны 90 градусов. Рассмотрим треугольник DNO. Угол OND=CND, угол АDМ=NCD. И в сумме они дают 90 градусов. Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов. Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла. Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM 2AM/OD=AM/ON, значит OD=2ON Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6 Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5 Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5 Площадь квадрата Sк=(12√5)²=720 Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180 Площадь AMCD=720-180=540
Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг. Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°. Следовательно, сумма центральных углов <AОВ+<CОD=120°, а 0,5<AOB+0,5<COD=60°. Пусть <AOB=α, a <COD=β тогда α/2+β/2=60°. Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой. В нашем случае: 11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе. 11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда 11/41=Sin(α/2)/Sin(60-α/2) (1). Пусть теперь α/2=γ (для простоты написания). Далее сплошная тригонометрия. По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1): 11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или (11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2). Мы знаем, что Cos²γ+Sin²(γ)=1. Тогда, возведя уравнение (2) в квадрат, получим: 363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2. Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5. ответ: R=27,5.
Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними.
Угол CND=углу АМD, угол АDМ=NCD
Сумма углов ADM и АМD равны 90 градусов.
Рассмотрим треугольник DNO.
Угол OND=CND,
угол АDМ=NCD. И в сумме они дают 90 градусов.
Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов.
Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла.
Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND
т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM
2AM/OD=AM/ON, значит OD=2ON
Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6
Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5
Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5
Площадь квадрата Sк=(12√5)²=720
Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ
площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180
Площадь AMCD=720-180=540
Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°.
Следовательно, сумма центральных углов <AОВ+<CОD=120°, а 0,5<AOB+0,5<COD=60°.
Пусть <AOB=α, a <COD=β тогда α/2+β/2=60°.
Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой.
В нашем случае:
11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе.
11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда
11/41=Sin(α/2)/Sin(60-α/2) (1).
Пусть теперь α/2=γ (для простоты написания).
Далее сплошная тригонометрия.
По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или
Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1):
11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или
(11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2).
Мы знаем, что Cos²γ+Sin²(γ)=1.
Тогда, возведя уравнение (2) в квадрат, получим:
363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2.
Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5.
ответ: R=27,5.