А) Параметры окружности получаем из её уравнения: - координаты центра (-1; 0), - радиус равен √9 = 3.
б) принадлежат ли данной окружности точки А (-2;3),В(2;3),С(1;0) ? Для этого надо подставить координаты точек в уравнение окружности и проверить - соблюдается ли равенство (x+2)^2+y^2=9. А: (-2+2)²+3² = 0+9 = 9 принадлежит. В: (2+2)²+3² = 16+9 = 25 ≠ 9 не принадлежит. С: (1+2)²+0² = 9 принадлежит.
в) АВ:(х+2)/4 = (у-3)/0. Так как координаты точек А и В по оси у равны между собой, то прямая АВ параллельна оси Ох и её уравнение у = 3.
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
- координаты центра (-1; 0),
- радиус равен √9 = 3.
б) принадлежат ли данной окружности точки А (-2;3),В(2;3),С(1;0) ?
Для этого надо подставить координаты точек в уравнение окружности и проверить - соблюдается ли равенство (x+2)^2+y^2=9.
А: (-2+2)²+3² = 0+9 = 9 принадлежит.
В: (2+2)²+3² = 16+9 = 25 ≠ 9 не принадлежит.
С: (1+2)²+0² = 9 принадлежит.
в) АВ:(х+2)/4 = (у-3)/0.
Так как координаты точек А и В по оси у равны между собой, то прямая АВ параллельна оси Ох и её уравнение у = 3.
Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)