Задача кривая. Слишком много данных, при этом не сходятся 2 различных решения.
Решение 1:
Пусть ВН - высота. Тогда в прямоугольном треугольнике △АВН ВН=(1/2)*АВ=12/2=6см (катет, лежащий против угла в 30°).
S(ABCD)=((AD+BC)/2)*BH=((18+11)/2)*6=87см².
Решение 2:
Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований.
То есть АН=(AD-BC)/2=(18-11)/2=3,5см.
Тогда в прямоугольном треугольнике △АВН ВН=√(АВ²-АН²)=√(12²-3,5²)=√131,75см.
Объяснение:
Вариант 1
Часть А
1
S=1/2×a×h
a=5+3=8
h=6
S=1/2×8×6=24
ответ : 1) 24
Часть В
2
а=12 см
b=5 см
d=корень (а^2+b^2)=корень (12^2+5^2)=
=корень 169=13 см
Часть С
3
Боковая сторона b=15 cм
Высота h=9 cм
Основание а=?
а/2=корень (b^2-h^2)=корень (15^2-9^2)=
=корень144=12 см
а=12×2=24 см
4
S=(a+b)/2×h
a=17 cм
b=5 cм
c=10 cм
Х=(а-b) /2=(17-5)/2=6 cм
h=корень (с^2-Х^2)=корень (10^2-6^2)=
=корень 64=8 см
S=(17+5)/2×8=88 cм^2
5
AB=CD=x
BC=AD=3x
ВD^2=AB^2+AD^2
20^2=x^2+(3x)^2
400=x^2+9x^2
400=10x^2
X^2=40
X=корень40
АВ=СD=корень 40
ВС=АD=3корень40
S=1/2×AD×AB=1/2×3 корень40×корень40=
=1/2×3×40=60
S=1/2×BD×AH
2S=BD×AH
AH=2S/BD
AH=2×60/20=6
ответ : 6
Объяснение:
Задача кривая. Слишком много данных, при этом не сходятся 2 различных решения.
Решение 1:
Пусть ВН - высота. Тогда в прямоугольном треугольнике △АВН ВН=(1/2)*АВ=12/2=6см (катет, лежащий против угла в 30°).
S(ABCD)=((AD+BC)/2)*BH=((18+11)/2)*6=87см².
Решение 2:
Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований.
То есть АН=(AD-BC)/2=(18-11)/2=3,5см.
Тогда в прямоугольном треугольнике △АВН ВН=√(АВ²-АН²)=√(12²-3,5²)=√131,75см.
S(ABCD)=((AD+BC)/2)*BH=((18+11)/2)*√131,75=166,43см² (примерно)
Рекомендую конечно взять первое решение, но почему они не сходятся - понятия не имею.