Заполните пропуски, !
два перпендикулярных отрезка km и ln пересекаются в общей серединной точке p. какой величины∡ n и ∡ k, если ∡ l = 80° и ∡ m = 10°?
1. отрезки делятся пополам, значит,
kp = lp= ∡= ∡ mpl, так как прямые перпендикулярны и оба угла равны °. по первому признаку равенства треугольник kpn равен треугольнику mpl.
2. в равных треугольниках соответствующие углы равны. в этих треугольниках соответствующие
∡ и ∡ m,
∡ и ∡ l.
∡ k =°;
∡ n =°.два перпендикулярных отрезка km и ln пересекаются в общей серединной точке p.
какой величины∡ n и ∡ k, если ∡ l = 80° и ∡ m = 10°?
1. отрезки делятся пополам, значит, kp =
,
= lp,
∡
= ∡ mpl, так как прямые перпендикулярны и оба угла равны
°.
по первому признаку равенства треугольник kpn равен треугольнику mpl.
2. в равных треугольниках соответствующие углы равны.
в этих треугольниках соответствующие ∡
и ∡ m, ∡
и∡ l.
∡ k =°;
∡ n =
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.
МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) = √(256 + 144) = √400 = 20
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.