Вектор АВ: (1-3=-2; 3-5=-2) = (-2;-2). Вектор АС = -СА = (-1;1). cos(<АВ-АС) = |(2*1-2*1)|/(√(2²+2²)*√(1²+1²) = 0/(√8*√2) = 0. Если косинус равен нулю, то угол равен 90 градусов. Треугольник прямоугольный.
2) Для определения координат центра описанной около треугольника окружности надо решить систему из уравнений двух срединных перпендикуляров к сторонам треугольника. Но для данной задачи это решается просто - центр находится на середине гипотенузы ВС. Точка О((1+4)/2=2,5;(3+4)/2=3,5) = (2,5; 3,5).
Для нахождения вероятности этого надо найти соотношение площадей круга и шестиугольника. Площадь круга, как известно: S = П*r^2, где П=3,14, r - радиус. Теперь найдём площадь вписанного правильного щестиугольника (нарисуйте иллюстрацию, так будет понятнее). Она равна шести площадям треугольника, образованного стороной шестиугольника и двумя радиусами. Так как угол этого треугольника, лежащий у центра окружности, равен 360 / 6 = 60, то этот треугольник вообще равносторонний и его сторона равна r. Найти площадь его можно по формуле Герона, если проходили (для неё достаточно только трёх сторон), или более классическим путём - как произведение половины основания на высоту. Основание r, высота легко выводится тригонометрически: для равностороннего треугольника высота равна r*cos(60/2) = / 2 * r Отсюда площадь треугольника: 1/2 * r * / 2 * r = / 4* r^2 Площадь шестиугольника равна: 6 * / 4* r^2 = 1,5 * * r^2 Теперь делим её на площадь круга: 1,5 * * r^2 / (П*r^2) = 1,5 * / П Численно это примерно равно 0,83 или 83%.
Вектор ВС: (4-1=3; 4-3=1) = (3; 1).
cos(<AB-BC) = |(-2*3-2*1)|/(√(2²+2²)*√(3²+1²) = 8/(√8*√10) = 8/(4√5) =
=2/√5.
Вектор ВС: (4-1=3; 4-3=1) = (3; 1).
Вектор СА: (4-3=1;4-5=-1) = (1;-1).
cos(<ВС-СА) = |(3*1-1*1)|/(√(3²+1²)*√(1²+1²) = 2/(√10*√2) = 2/(2√5) =
=1/√5.
Вектор АВ: (1-3=-2; 3-5=-2) = (-2;-2).
Вектор АС = -СА = (-1;1).
cos(<АВ-АС) = |(2*1-2*1)|/(√(2²+2²)*√(1²+1²) = 0/(√8*√2) = 0.
Если косинус равен нулю, то угол равен 90 градусов.
Треугольник прямоугольный.
2) Для определения координат центра описанной около треугольника окружности надо решить систему из уравнений двух срединных перпендикуляров к сторонам треугольника.
Но для данной задачи это решается просто - центр находится на середине гипотенузы ВС.
Точка О((1+4)/2=2,5;(3+4)/2=3,5) = (2,5; 3,5).
S = П*r^2, где П=3,14, r - радиус.
Теперь найдём площадь вписанного правильного щестиугольника (нарисуйте иллюстрацию, так будет понятнее). Она равна шести площадям треугольника, образованного стороной шестиугольника и двумя радиусами. Так как угол этого треугольника, лежащий у центра окружности, равен 360 / 6 = 60, то этот треугольник вообще равносторонний и его сторона равна r. Найти площадь его можно по формуле Герона, если проходили (для неё достаточно только трёх сторон), или более классическим путём - как произведение половины основания на высоту. Основание r, высота легко выводится тригонометрически: для равностороннего треугольника высота равна r*cos(60/2) = / 2 * r
Отсюда площадь треугольника: 1/2 * r * / 2 * r = / 4* r^2
Площадь шестиугольника равна: 6 * / 4* r^2 = 1,5 * * r^2
Теперь делим её на площадь круга:
1,5 * * r^2 / (П*r^2) = 1,5 * / П
Численно это примерно равно 0,83 или 83%.