Запишіть координати точки А, якщо відомо, що вона розміщена:
а) на від`ємній півосі z на відстані 5 від початку координат;
б) в площині ху на відстані 3 і 4 від осі х і у відповідно;
в) на відстані 3, 4, 5 від координатних площин ху, zх, zу відповідно;
г) на відстані 3, 4, 5 від координатних осей х, у, z відповідно.
В любом случае диагональю фигуру разбить на 2 треугольника,
Искомая площадь равна сумме двух треугольников.
Треугольник АВС
Точка А Точка В Точка С
Ха Уа Хв Ув Хс Ус
2 -2 8 -4 8 8
Длины сторон:
АВ ВС АС
6.32455532 12 11.66190379
Периметр Р = 29.98646,
p = 1/2Р = 14.99323,
Площадь определяем по формуле Герона: S = 36.
Треугольник АСД
Точка А Точка С Точка Д
Ха Уа Хс Ус Хд Уд
2 -2 8 8 2 10
АС СД АД
11.6619038 6.32455532 12
Периметр Р = 29.99, р = /2Р = 4.99
Площадь определяем по формуле Герона: S = 36.
Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
0,5
Объяснение:
1-й
Площадь треугольника равна половине произведения основания на высоту.
В прямоугольном треугольнике основанием и высотой являются его катеты.
В приведённом примере оба катета равны 1, т.к. все 3 вершины треугольника совпадают с вершинами квадрата, а стороны квадрата равны.
Находим площадь треугольника:
(1 * 1) : 2 = 1 : 2 = 0,5.
2-й
Диагональ квадрата делит его на 2 равных треугольника. Поэтому, если площадь квадрата равна 1, то площадь треугольника, образованного сторонами и диагональю квадрата, равна 1 : 2 = 0,5
ответ: 0,5.
ПРИМЕЧАНИЕ.
В задании не сказано, но на рисунке отмечена диагональ квадрата как х.
Согласно теореме Пифагора,
х = √ (1² + 1²) = √2.
Зная стороны треугольника (1 и √2), площадь треугольника можно рассчитать третьим площадь треугольника равна половине произведения сторон на синус угла между ними.
Угол между стороной и гипотенузой равен 45°, т.к. диагональ квадрата является биссектрисой угла, а угол - прямой, равен 90°.
sin 45° = √2/2.
Отсюда площадь треугольника равна:
(1 * √2 * √2/2) : 2 = (1 * 2/2) : 2 = 0,5