Из точки К проведём перпендикуляры КР и КЕ соответственно к сторонам ВС и АС. КР и КЕ являются средними линиями в ΔАВС.
КР = 0,5АС = 4; КЕ = 0,5ВС = 3.
Проведём наклонные МР и МЕ, которые и являются расстояниями от точки М до прямых ВС и АС, так как по теореме о 3-х перпендикулярах ВС ⊥ КР ⇒ ВС ⊥ МР и АС ⊥КЕ ⇒ АС ⊥МЕ.
а) Сторона квадрата равна а = √64 = 8см. SK,SL,SM,SN все равны половине стороны квадрата = 4см ΔSKO = ΔSLO = ΔSKO = ΔSNO ( прямоугольные: по двум катетам. Один катет у них общий - это SO=4 а другие равны по половине стороны квадрата =4. В равных тр-ках против равных сторон лежат равные углы поэтому углы. лежащие против SO равны. А это и есть углы образуемые прямыми SK,SL,SM,SN с плоскостью квадрата. Что и требовалось доказать. б) поскольку катеты SO=4 и ОК = OL = OM = ON = 4, то эти углы равны по 45 градусов.
МР = √41; МЕ = √34
Объяснение:
Смотри рисунок на прикреплённом фото.
Найдём гипотенузу АВ = √(АС² + ВС²) = √(8² + 6²) = 10
Из точки К проведём перпендикуляры КР и КЕ соответственно к сторонам ВС и АС. КР и КЕ являются средними линиями в ΔАВС.
КР = 0,5АС = 4; КЕ = 0,5ВС = 3.
Проведём наклонные МР и МЕ, которые и являются расстояниями от точки М до прямых ВС и АС, так как по теореме о 3-х перпендикулярах ВС ⊥ КР ⇒ ВС ⊥ МР и АС ⊥КЕ ⇒ АС ⊥МЕ.
Найдём МР и МЕ по теореме Пифагора.
МР = √(КР² + КМ²) = √(4² + 5²) = √41
МЕ = √(КЕ² + КМ²) = √(3² + 5²) = √34
SK,SL,SM,SN все равны половине стороны квадрата = 4см
ΔSKO = ΔSLO = ΔSKO = ΔSNO ( прямоугольные: по двум катетам. Один катет у них общий - это SO=4 а другие равны по половине стороны квадрата =4.
В равных тр-ках против равных сторон лежат равные углы поэтому углы. лежащие против SO равны. А это и есть углы образуемые прямыми SK,SL,SM,SN с плоскостью квадрата. Что и требовалось доказать.
б) поскольку катеты SO=4 и ОК = OL = OM = ON = 4, то эти углы равны по 45 градусов.