Условие задачи некорректно. Иногда задачи с таким условием составляются специально. Доказательство ниже.
———
ВВ1 перпендикулярен плоскости альфа, следовательно, этот отрезок перпендикулярен любой прямой, проходящей в этой плоскости через В1.
BD=6√2
∆ ВАD- прямоугольный равнобедренный. Его острые углы равны 45°⇒
AD=BD•sin45°=6
По условию AD лежит в плоскости α.
Поэтому по т. о 3-х перпендикулярах В1А⊥AD, C1D⊥DA, проекция квадрата ABCD на эту плоскость – прямоугольник АВ1С1D.
Угол В1АD- прямой.
Угол В1DА=60°(дано)
Проекция диагонали ВD на плоскость α – гипотенуза В1D
треугольника В1АD
B1D=AD:cos60°=6:1/2=12
———————
Мы получили проекцию наклонной ВD, которая имеет большую длину, чем сама наклонная. Т.е. в прямоугольном ∆ ВВ1D длина катета B1D больше длины гипотенузы BD, чего быть не может. Задача с таким же условием есть от 2015 г, и так именно задумана её составителями.
Но если величина угла В1DА равна 30°,то проекция ВD на плоскост α равна AD:cos30°=4√3.
Или угол В1DB=60° -тоже получится допустимый результат.
Окружность = 360° 1) 5+4 =9 столько частей в этих 360° Меньшая дуга 360:9*4=40°*4=160° Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ). Вписанный угол АСВ равен половине центрального угла. 160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен 360°:9*5:2=100°. Но обычно имеется в виду острый угол. ------------ 2) 7+3=10 столько частей в двух дугах. 360°:10*3=108° содержит центральный угол КОМ ( второй рисунок) Вписанный угол МЕК равен половине градусной меры центрального угла. 108°:2=54° - под этим углом видна вторая хорда. (Или, если точка расположена по другую сторону хорды, 360:10*7:2=126°)
Условие задачи некорректно. Иногда задачи с таким условием составляются специально. Доказательство ниже.
———
ВВ1 перпендикулярен плоскости альфа, следовательно, этот отрезок перпендикулярен любой прямой, проходящей в этой плоскости через В1.
BD=6√2
∆ ВАD- прямоугольный равнобедренный. Его острые углы равны 45°⇒
AD=BD•sin45°=6
По условию AD лежит в плоскости α.
Поэтому по т. о 3-х перпендикулярах В1А⊥AD, C1D⊥DA, проекция квадрата ABCD на эту плоскость – прямоугольник АВ1С1D.
Угол В1АD- прямой.
Угол В1DА=60°(дано)
Проекция диагонали ВD на плоскость α – гипотенуза В1D
треугольника В1АD
B1D=AD:cos60°=6:1/2=12
———————
Мы получили проекцию наклонной ВD, которая имеет большую длину, чем сама наклонная. Т.е. в прямоугольном ∆ ВВ1D длина катета B1D больше длины гипотенузы BD, чего быть не может. Задача с таким же условием есть от 2015 г, и так именно задумана её составителями.
Но если величина угла В1DА равна 30°,то проекция ВD на плоскост α равна AD:cos30°=4√3.
Или угол В1DB=60° -тоже получится допустимый результат.
1) 5+4 =9 столько частей в этих 360°
Меньшая дуга 360:9*4=40°*4=160°
Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ).
Вписанный угол АСВ равен половине центрального угла.
160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ
Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен
360°:9*5:2=100°. Но обычно имеется в виду острый угол.
------------
2) 7+3=10 столько частей в двух дугах.
360°:10*3=108° содержит центральный угол КОМ ( второй рисунок)
Вписанный угол МЕК равен половине градусной меры центрального угла.
108°:2=54° - под этим углом видна вторая хорда.
(Или, если точка расположена по другую сторону хорды,
360:10*7:2=126°)