Можно решить сразу все три задания таким образом. Здесь речь идет о правильных многоугольниках, в заданиях спрашиваются длины, а не площади, значит отношения будут пропорциональны отношению сторон этих многоугольников. То есть у каждого задания один и тот же ответ. Не нужно вычислять радиусы вписанных и описанных окружностей, а также периметры. Достаточно вычислить отношения сторон.
12:8=1,5 - отношение (периметров, радиусов вписанной окружности, радиусов описанной окружности, нужное подчеркнуть) большого многоугольника к меньшему.
- отношение (периметра, радиуса вписанной окружности, радиуса описанной окружности, нужное подчеркнуть) меньшего многоугольника к большому.
1) Пусть касается нужная касательная в точке К. Расстоянием от АВ до К будет расстояние от середины отрезка АВ до точки К. Так как треугольник АОВ - равнобедренный, то высота, биссектриса и медиана будет одним и тем же отрезком. Пусть АМ=МВ. Значит МК=МО+ОК нам нужно найти. ОК - уже известно, так как это радиус. Осталось найти МО. МО - можно найти по теореме Пифагора. МВ - половина АВ, значит МВ=12 см.
MO=5 см.
Значит МК=МО+ОК
МК=5+13
МК=18.
ответ: расстояние равно 18 см.
2) Ведь у четырехугольника ACBO два угла прямые: это угол CAO и угол CBO, так как они являются касательными к окружности. В четырехугольнике всего 360 градусов. Значит AOB=360-90-90-50=130 градусов.
Можно решить сразу все три задания таким образом. Здесь речь идет о правильных многоугольниках, в заданиях спрашиваются длины, а не площади, значит отношения будут пропорциональны отношению сторон этих многоугольников. То есть у каждого задания один и тот же ответ. Не нужно вычислять радиусы вписанных и описанных окружностей, а также периметры. Достаточно вычислить отношения сторон.
12:8=1,5 - отношение (периметров, радиусов вписанной окружности, радиусов описанной окружности, нужное подчеркнуть) большого многоугольника к меньшему.
- отношение (периметра, радиуса вписанной окружности, радиуса описанной окружности, нужное подчеркнуть) меньшего многоугольника к большому.
1) Пусть касается нужная касательная в точке К. Расстоянием от АВ до К будет расстояние от середины отрезка АВ до точки К. Так как треугольник АОВ - равнобедренный, то высота, биссектриса и медиана будет одним и тем же отрезком. Пусть АМ=МВ. Значит МК=МО+ОК нам нужно найти. ОК - уже известно, так как это радиус. Осталось найти МО. МО - можно найти по теореме Пифагора. МВ - половина АВ, значит МВ=12 см.
MO=5 см.
Значит МК=МО+ОК
МК=5+13
МК=18.
ответ: расстояние равно 18 см.
2) Ведь у четырехугольника ACBO два угла прямые: это угол CAO и угол CBO, так как они являются касательными к окружности. В четырехугольнике всего 360 градусов. Значит AOB=360-90-90-50=130 градусов.
ответ: 130 градусов