Задание1. Распредели частицы согласно их значения.(например: усиление: даже и , и.т. д.)
все-таки , ведь, именно, что за, вряд ли , как, именно, как раз, едва ли, почти, лишь, исключительно, лишь, только, бывало, давай, пускай, же, то, пускай, пусть, ли, разве, неужели,даже и.
Задание2. Из предложения выбрать две частицы,выполнить их морфологический разбор. Но никто бы все равно глазеть на него не стал , если бы он не был самым сильным во всей школе. (писать в окне)
1.
Треугольник ΔABH = ΔCBH по первому признаку равенства треугольников так как, AB = CB, ∠ABH = ∠CBH - по условию, а сторона BH - общая для треугольников, следовательно из равенства треугольников, что соответствующие стороны элементы, тогда AH = HC.
2.
Так как AB = BC по условию, тогда треугольник ΔABC - равнобедренный, тогда по свойству равнобедренного треугольника углы при основании следовательно (AC - основание) угол ∠BAK = =∠BCK.Треугольник ΔAKE = ΔKPC по второму признаку равенства треугольников так как, AK = KC, ∠AKE = ∠PKC - по условию, а угол ∠BAK = ∠BCK потому, что треугольник ΔABC - равнобедренный.
3.
Треугольник ΔABD = ΔCBD по третьему признаку равенства треугольников так как, AB = BC, AD = DC - по условию, а сторона
BD - общая треугольников, следовательно соответствующие элементы треугольников равны и угол ∠ABD = ∠CBD тогда BD - биссектриса
угла ∠ABC.
Объяснение:
Нужны:
1. Сумма углов треугольника
2.Теорема синусов.
Треугольник имеет шесть основных элементов: три угла A, B, C и три стороны a, b, c.
Решить треугольник – значит найти все эти шесть элементов.
Известны 2 угла и 1 сторона. Найти третий угол и две стороны.
Третий угол С =180-48-64=68°
ва с 14
= = = =15.1
sin(48°) sin(64°) sin(68°)0.9272
(точки - между а,в, с -для выдержки расстояния, иначе дробь не получается)
в= 0.7431*15.1= 11.22см
а=0.8988*15.1= 13.6см
Проверка:
с²=а²+ в²-2ав*cos(68°)
с²=184.96+ 125.89 -305.184(0.3746=184.96+125.89=114.32=196
с²=196
с=14