Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
Внешний угол треугольника равен сумме двух других углов, не смежных с ним. А угол, смежный с внешним углом, находится по формуле: 180-градусная мера внешнего угла. Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов. А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов. ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
S осевого сечения=2r²=32 см²
Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов.
А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов.
ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.