В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Буся2212
Буся2212
20.05.2022 00:28 •  Геометрия

Задание 1
Градусная мера угла AOB равна 1 радиану. Найдите длину дуги АВ.
Дескриптор: Обучающийся
- применяет определение радианной меры для нахождения длины дуги;
- находит длину дуги АВ.​

Показать ответ
Ответ:
Trytodo
Trytodo
09.12.2022 10:00
Введем дополнительные обозначения:
Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD
a) по условию АВ-диаметр окружности, значит АО=ОВ=R
ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R 
Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R
Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит 
∠ВАD=∠OHA
При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD.
Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.

б) ∠ВАD=∠OHA=60°
∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R
∠ABC=∠BCD=180°-60°=120°
Если окружность касается CD, то ∠OKC=90° и ОК=R 
Сумма всех углов в четырехугольнике равна 360°
∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30°
Если ОQ -средняя линия трапеции, то OQ || AD, следовательно
∠BAD=∠BOQ=60°
∠KOQ=∠BOQ-∠ВОК=60°-30°=30°
ΔOQK -прямоугольный с прямым углом OKQ
cos30= \frac{OK}{OQ} \\ \frac{ \sqrt{3} }{2} = \frac{R}{OQ} \\ OQ= \frac{2R}{ \sqrt{3} }
OQ=HD- так как DQOH-параллелограмм
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} }
средняя линия трапеции =(а+в)/2
OQ=( BC+AD )/2 \\ \frac{2R}{ \sqrt{3} } =(2+R+ \frac{2R}{ \sqrt{3} }) /2= \frac{2 \sqrt{3}+R \sqrt{3}+2R}{ \sqrt{3}} /2 \\ \frac{2R}{ \sqrt{3} }=\frac{2 \sqrt{3}+R \sqrt{3}+2R}{ 2\sqrt{3}}|*2 \sqrt{3} \\ \\ 4R=2\sqrt{3} +R\sqrt{3} +2R \\ 2R-R\sqrt{3} =2\sqrt{3} \\ R(2-\sqrt{3} )=2\sqrt{3} \\ \\ R= \frac{2\sqrt{3} }{2-\sqrt{3} } = \frac{2\sqrt{3}(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}= \frac{4\sqrt{3}+2*3}{2 ^{2} -\sqrt{3}^{2} } = \frac{4\sqrt{3}+6}{4-3 }=4\sqrt{3}+6
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} } =R+\frac{2R \sqrt{3} }{\sqrt{3}*\sqrt{3}} = \frac{3R}{3} + \frac{2\sqrt{3}R}{3} = \frac{3R+2\sqrt{3}R}{3} = \\ \frac{3(4\sqrt{3}+6)+2 \sqrt{3} (4\sqrt{3}+6)}{3} = \frac{12 \sqrt{3}+18+24+12 \sqrt{3} }{3} = \frac{24 \sqrt{3}+42 }{3} =8 \sqrt{3} +14 \\ OTBET: 8 \sqrt{3} +14

Решите,мне нужно с рисунком. ☺дана равнобедренная трапеция abcd с основаниями ad и bc. окружность с
0,0(0 оценок)
Ответ:
nekrasovlesha1
nekrasovlesha1
15.07.2022 15:33

AB = AC = \sqrt{56} см

Объяснение:

Дано:

AC = AB, BC = 10 см, BM = 8 см, CM = MA

Знайти:  AC,AB - ?

Розв'язання: Проведемо медіану до основи BC у точку K, тоді CK = BK =

= BC : 2 = 10 : 2 = 5 см.Нехай медіани AK і BM - перетинаються в

точці O.За теоремою про медіану, медіани точкою перетину діляться у відношенні 2 : 1, рахуючи від вершини кута.Введемо коефіціент пропорційності y, тоді BO = 2y,MO = y, так як медіани AK і BM - перетинаються в точці O.

BM = BO + MO;

8 = 2y + y;

8 = 3y;

y = \frac{8}{3}  ;

BO = 2y = 2 * \frac{8}{3} = \frac{16}{3} ; MO = y = \frac{8}{3} ;

За властивістю рівнобедренного трикутника медіана проведена до основи є бісектрисою і висотою, тоді за теоремою Піфагора:OK = \sqrt{BO^{2} - BK^{2} }=\sqrt{(\frac{16}{3} )^{2} - 5^{2} }=\sqrt{\frac{256}{9} - 25}=\sqrt{\frac{256 - 225}{9} }=\sqrt{\frac{31}{9} }=\frac{\sqrt{31} }{3} ;

Введемо коефіціент пропорційності x, тоді OK = x, AO = 2x за теоремою про медіану, так як медіани AK і BM - перетинаються в точці O.

AK = OK + AO;

AK = x + 2x = 3x = 3*OK  = \frac{3\sqrt{31} }{3} = \sqrt{31} ;

За властивістю рівнобедренного трикутника медіана проведена до основи є бісектрисою і висотою, тоді за теоремою Піфагора:

AB = \sqrt{KA^{2} +KB^{2} }=\sqrt{(\sqrt{31} )^{2} +5^{2} } =\sqrt{31 + 25}=\sqrt{56}

Так як AB = BC за умовою, то AB = AC = \sqrt{56} см.


за 1 задачу Основа рівнобедреного трикутника дорівнює 10 см, а медіана, проведена до бічної сторони,
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота