Задание №1. Из заготовки в форме цилиндра высотой 15 см и площадью осевого сечения 195 см2 выточили изделие в форме шара радиуса 12 см, Найдите площадь полной поверхности заготовки и готового изделия. Сделать чертеж.
Задание №2. Вычислить стоимость металлической конструкции, изготовленной в форме цилиндра, на верхнем основании которого располагается конус высотой 1 м и радиусом основания 1,5 м, причем площадь осевого сечения конструкции равна 6,75 м2, если 1 м2 металла стоит 900 рублей. Сделать чертеж.
Биссектрисы равностороннего треугольника равны и являются медианами и высотами. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
Следовательно, радиус вписанной в равносторонний треугольник окружности равен 1/3 его высоты.
Высота равна стороне, умноженной на синус угла треугольника.
и см
-------
2) Четырехугольник можно описать около окружности тогда и только тогда, когда суммы его противоположных сторон равны.
Следовательно, ВС+АD=АВ+CD.
АD=2 BC⇒
BC+2ВС=7+11
3 ВС=18
ВС=6 см
AD=12 см.
1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2.
2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°;
3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса.
[Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;]
То есть 34/13 = (P - 39)/39; P = 141;
4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15;
5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30;
Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;