Делаем дополнительное построение: из точки А опускаем перпендикуляр АК на продолжение стороны ВС. (АК⊥ВС). Точку D соединяем с точкой К, образовав пл-ть ADK. Докажем, что DK - расстояние от точки D до прямой ВС, то есть DK⊥ BC.
Пл-ть ADK ⊥ пл-ти АВС, так как прямая AD, принадлежащая пл-ти АDK, перпендикулярна пл-ти АВС (AD∈ ADK и AD⊥пл-ти АВС ⇒ пл-ть АDK ⊥ пл-ти ABС).
Далее. Поскольку прямая ВС ⊥ АК (линии пересечения пл-тей АВС и АDK), то она перпендикулярна пл-ти ADK.
И поскольку ВС ⊥ пл-ти ADK, то она перпендикулярна каждой прямой пл-ти ADK, проходящей через точку пересечения К. Таким образом, DK⊥BC и является расстоянием от точки D до прямой ВС. DK = 2√43, по условию.
а) Пусть угол В равен х градусов, тогда угол А равен х/4 градусов (если в ... раз меньше, то надо разделить), а угол С равен (х - 90) градусов (если на ... меньше, то надо вычесть). Сумма углов треугольника равна (х + х/4 + (х - 90)) градусов или 180° ( по теореме о сумме углов треугольника). Составим уравнение и решим его.
х + х/4 + (х - 90) = 180;
х + 0,25х + х - 90 = 180;
2,25х - 90 = 180;
2,25х = 180 + 90;
2,25х = 270;
х = 270 : 2,25;
х = 120° - угол В;
х/4 = 120°/4 = 30° - угол А;
х - 90 = 120° - 90° = 30°.
ответ. ∠A = 30°; ∠B = 120°; ∠C = 30°.
б) Если в треугольнике два угла равны, то этот треугольник будет равнобедренным. Угол В равен 120°. Напротив этого угла лежит сторона АС, которая будет основанием. Две другие стороны треугольника АВ и ВС будут боковыми сторонами. Боковые стороны равнобедренного треугольника равны.
DA = 5см
Объяснение:
Смотри рисунок на прикреплённом фото.
Дано, что DA ⊥ плоскости ΔАВС.
Делаем дополнительное построение: из точки А опускаем перпендикуляр АК на продолжение стороны ВС. (АК⊥ВС). Точку D соединяем с точкой К, образовав пл-ть ADK. Докажем, что DK - расстояние от точки D до прямой ВС, то есть DK⊥ BC.
Пл-ть ADK ⊥ пл-ти АВС, так как прямая AD, принадлежащая пл-ти АDK, перпендикулярна пл-ти АВС (AD∈ ADK и AD⊥пл-ти АВС ⇒ пл-ть АDK ⊥ пл-ти ABС).
Далее. Поскольку прямая ВС ⊥ АК (линии пересечения пл-тей АВС и АDK), то она перпендикулярна пл-ти ADK.
И поскольку ВС ⊥ пл-ти ADK, то она перпендикулярна каждой прямой пл-ти ADK, проходящей через точку пересечения К. Таким образом, DK⊥BC и является расстоянием от точки D до прямой ВС. DK = 2√43, по условию.
∠АВК и ∠АВС смежные углы, поэтому
∠АВК = 180° - ∠АВС = 180° - 120° = 60°.
АК = АВ·sin 60° = 14 · 0.5√3 = 7√3 (cм).
По теореме Пифагора DK² = AK² + DA², откуда
DA = √(DK² - AK²) = √(4 · 43 - 49 · 3) = √172 - 147 = √25 = 5(см)
а) Пусть угол В равен х градусов, тогда угол А равен х/4 градусов (если в ... раз меньше, то надо разделить), а угол С равен (х - 90) градусов (если на ... меньше, то надо вычесть). Сумма углов треугольника равна (х + х/4 + (х - 90)) градусов или 180° ( по теореме о сумме углов треугольника). Составим уравнение и решим его.
х + х/4 + (х - 90) = 180;
х + 0,25х + х - 90 = 180;
2,25х - 90 = 180;
2,25х = 180 + 90;
2,25х = 270;
х = 270 : 2,25;
х = 120° - угол В;
х/4 = 120°/4 = 30° - угол А;
х - 90 = 120° - 90° = 30°.
ответ. ∠A = 30°; ∠B = 120°; ∠C = 30°.
б) Если в треугольнике два угла равны, то этот треугольник будет равнобедренным. Угол В равен 120°. Напротив этого угла лежит сторона АС, которая будет основанием. Две другие стороны треугольника АВ и ВС будут боковыми сторонами. Боковые стороны равнобедренного треугольника равны.
ответ. АВ = ВС.