Например, можно так. построить циркулем и линейкой два перпендикулярных луча с общим началом. на одном отложить данный отрезок √5, а на другом — два раза √5. соединить полученные точки a и b. по теореме пифагора длина полученного отрезка ab будет равна 5. теперь через a надо провести произвольную прямую и отложить на ней циркулем пять раз некоторый отрезок, получим точки a1, a2, a3, a4, a5 (aa1=a1a2=a2a3=a3a4=a4a5). затем проводим прямую a5b и через точки a1, a2, a3, a4 параллельные ей. по теореме фалеса эти прямые разделят отрезок ab на пять равных частей, то есть отрезки длины 1.другой способ. строим отрезок длины 5 (см. предыдущее решение) . проводим две прямые, пересекающиеся в точке m. на одной из них в разные стороны откладываем отрезки ma = mb = √5. на другой прямой откладываем отрезок mc = 5. теперь описываем вокруг треугольника abc окружность и находим точку d пересечения окружности со второй прямой. по свойству хорд ma·mb = mc·md, поэтому md = 1.
Опустим из вершины В высоту ВE на основание AD.
Из вершины С высоту CF. Нижнее основание делится на три отрезка, причем АЕ=FD, а EF=ВС, обозначим AE и FD как х, а EF и BC, как у.
ТОгда средняя линия равна KL=(BC+AD)/2=(x+2y+x)/2=x+y
Т.е. нам нужно найти длину отрезка ED, который равен x+y
Рассмотрим треугольник EBD, он прямоугольный и его угол BDE=60, тогда угол EBD=90-60=30.
Как мы знаем, что катет противолежалий углу 30 градусов равен половине гиппотенузе. Гиппотенуза у нас BD=4, тогда ED=KL=2
ответ: KL=2