За суммативного оценивания за 4 четверть по предмету «2 вариант12 ) радуе велосипедного колеса равен 25,5 см. найдите его диаметр2. 3 ) установите взаимное расположение окружностей, еслиа) r = 4 см = 5 см, 0.0 =см,б) r = 6 ск. r = 2 см 00 10 смs) r = 3 см. 7 см, оо = 5 см.3. (5 беrnoel 8 окружности с центром в точке о проведена хорда ce, длина которойравна длине радуса. перпендикулярно этой хорде проведен радиус oa радиус оакорда ce пересекаются в точке м длина отрезка cm равна 14.2 сме постройте ерте по условно ,б) найдете длину хооды сев) вычислите длину радуса,найте периметр треугольника ссе.4. (4 вершины равнобедренного треугольника abc лежат на окружности,причем основание ав этого треугольника стягивает дугу 50°найдите градусныемеры дуг bc и ac5. (3 радиусы двух концентрических окружностей, относятся как 25. найдитерадиусы этих окружностей, если ширина кольца, образованного ими, равна 15 см.в 13 ) разделите угол на четыре равные части.
Дано: равносторонний треугольник АВС, R = 20 см
Найти: P - ?
1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 20:2 = 10 см.
2. Если сложить два радиуса, получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 10 + 20 = 30.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 900
3х² = 900
х² = 300
х = 10√3 и х = -10√3, но этот корень не подходит по усл., а значит он посторонний.
3. 10√3 - половина стороны, значит вся сторона = 20√3
Р = 3 * 20√3 = 60√3
ответ: 60√3
1. Найдем направляющий вектор прямой, являющейся пересечением плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Для этого вспомним, что в уравнении плоскости:
ax + by + cz + d = 0
коэффициенты (а, b, c) являются координатами вектора n, ортогонального плоскости. Так что мы имеем два вектора n1(1, -2, 3) и n2(1, 1, -5), которые ортогональны нашим плоскостям. Т. к. наша прямая лежит одновременно в обоих плоскостях, то она ортогональна обоим векторам n1 и n2. Соответственно направляющим вектором этой прямой может быть вектор, равный векторному произведению [n1, n2]. Итак, составляете матрицу векторного произведения, раскладываете ее по строке с символами i j k и получаете координаты направляющего вектора.
2. Т. к. плоскость параллельна оси ОХ, то на искомой плоскости всегда можно построить вектор с координатами (1, 0, 0). Действительно, предположим мы возьмем на плоскости точку М с координатами (а, b, c). Тогда на плоскости имеется и точка М1(a+1, b, c). Ведь если мы проведем из точки М (a, b, c) прямую, параллельную оси ОХ, то у всех точек этой прямой координаты у и z будут одинаковы, а изменяться будет лишь координата х.
Найдем координаты вектора ММ1(a +1 - a, b - b, с - с) = (1, 0, 0)
3. Теперь найдем точку, принадлежащую искомой плоскости. Предположим эта точка лежит на прямой пересечения двух плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Предположим также, что координата z этой точки равна 0. Тогда, подставив в уравнения плоскостей z = 0 получим систему уравнений:
x - 2y - 4 = 0
x + y + 9 = 0
Решая эту систему получаем:
х = -14/3
y = -13/3
Итак мы нашли координаты точки А (-14/3, -13/3, 0), которая принадлежит искомой плоскости.
4. Теперь возьмем на искомой плоскости произвольную точку Х (х, y, z) и найдем координаты вектора АХ (x +14/3, y + 13/3, z) который пробегает все точки плоскости.
5. Таким образом у нас есть 3 вектора: направляющий вектор прямой, координаты которого Вы нашли в п. 1, вектор ММ1(1, 0, 0) и вектор АХ (x +14/3, y + 13/3, z). Все эти векторы компланарны. А это значит, что их смешанное произведение равно 0. Теперь составляем матрицу смешанного произведения этих векторов, поставив на первую строчку координаты вектора АХ (x +14/3, y + 13/3, z). Далее разложив матрицу по первой строке, приведя коэффициенты при х, у, z и приравняв полученное выражение к 0 Вы получите искомое уравнение плоскости.