В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
gussamovadel
gussamovadel
03.04.2021 19:52 •  Геометрия

За рисунком знайдіть скалярний добуток векторів ОВ і ОА . Быстрее


За рисунком знайдіть скалярний добуток векторів ОВ і ОА . Быстрее

Показать ответ
Ответ:
Arituk
Arituk
26.12.2022 23:05
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.

Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.

Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.

Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.

Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.

Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.

Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².

Отже, площа трапеції дорівнює 16 см².
У прямокутну трапецію вписано коло радіуса 4 см. Знайти площу трапеції, якщо її менша основа дорівню
0,0(0 оценок)
Ответ:
Студент71653
Студент71653
14.02.2021 05:47

Чтобы доказать, что линия AR перпендикулярна плоскости MNPQ, мы можем воспользоваться свойством параллелограмма и треугольника.

Обратимся к треугольнику AMQ. Поскольку M и N являются серединами сторон AB и BC соответственно, то отрезок MN параллелен и равен половине отрезка AC. А по свойству параллелограмма, диагонали параллелограмма делятся пополам. Таким образом, точка R, являющаяся точкой пересечения отрезков MQ и NP, является серединой отрезка AC.

Аналогичные рассуждения можно провести для треугольников BNP, CPM и DQN, и прийти к выводу, что точка R является серединой отрезков BD, CD и AD соответственно.

Таким образом, линия AR проходит через середины всех ребер тетраэдра ABCD, а значит, она является медианой этого тетраэдра. Поскольку медиана пересекает плоскость MNPQ в ее центре (точке пересечения медиан), то линия AR будет перпендикулярна этой плоскости.

Таким образом, мы доказали, что линия AR перпендикулярна плоскости MNPQ.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота