Углы ромба, прилежащие к одной стороне, в сумме равны 180°, следовательно, острый угол ромба равен 180°-120°=60°. Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны. Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой) равны по 60°. Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть сторона ромба= 36:4=9. ответ: меньшая диагональ ромба равна 9.
Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны.
Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой)
равны по 60°.
Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть
сторона ромба= 36:4=9.
ответ: меньшая диагональ ромба равна 9.
Тут всё достаточно просто, вот смотри:
По условию задачи, диагональ трапеции разбила её на два треугольника, у которых средние линии равны 5 см и 9 см. Это понятно.
Дальше:
Поскольку средняя линия равна половине основания, то, соответственно, основания этих треугольников равны, поэтому приведу следующие вычисления:
5*2=10 см.
9*2=18 см.
Итак, основания этих треугольников являются основаниями самой трапеции, а это и значит, что основания трапеции будут являться 10 см. и 18 см.