За даними, наведеними на малюнку, знайти відрізки АD і СD. Знайти катети прямокутного трикутника, якщо медіана, проведена до гіпотенузи, дорівнює т, а гострий кут трикутника a (Підказка: медіана, що проведена до гіпотенузи, дорівнює половині гіпотенузи
Сторона АD прямокутника АВСD дорівнює а і утворює з діагоналлю АС кут a. Знайти радіус кола, описаного навколо прямокутника.
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.