З точки К - середини сторони ВС рівносторонього трикутника АВС проведено перпендикуляр КМ до сторони АВ. Знайдіть довжину КМ , якщо периметр трикутника АВС дорівнює 24см.
В выпуклом n-угольнике всего n(n-3)/2 диагонали, так как можно выбрать одну из вершин и выбрать другую вершину, не смежную с уже выбранной. Каждая диагональ будет посчитана 2 раза, поэтому нужно разделить результат на 2. Таким образом, нужно решить уравнение n(n-3)/2=77 или n(n-3)=154. Можно просто подобрать n или решить квадратное уравнение n²-3n-154=0 : n²-3n-154=0 D=9+154*4=9+616=625 n₁=(3+25)/2=14 n₂=(3-25)/2=-11 - посторонний корень, число сторон положительно.
Таким образом, n=14, то есть в многоугольнике 14 сторон. В выпуклом n-угольнике сумма углов равна 180(n-2), тогда сумма углов выпуклого 14-угольника будет равна 180(14-2)=180*12=2160 градусам.
Высота равнобедренного треугольника, проведенная к большему основанию, делит его на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме.
АН=(AD-BC):2=1
HD=(BC+AD):2=4
Из прямоугольного ∆ АВН по т.Пифагора высота
ВН=√(AB²-AH²)=√48=4√3
Из прямоугольного ∆ DBH диагональ
ВD=√(BH²+HD²)=√(48+16)=8 см (диагонали равнобедренной трапеции равны, ⇒ АС=8 см)
Площадь трапеции равна произведению высоты на полусумму оснований.
n²-3n-154=0
D=9+154*4=9+616=625
n₁=(3+25)/2=14
n₂=(3-25)/2=-11 - посторонний корень, число сторон положительно.
Таким образом, n=14, то есть в многоугольнике 14 сторон. В выпуклом n-угольнике сумма углов равна 180(n-2), тогда сумма углов выпуклого 14-угольника будет равна 180(14-2)=180*12=2160 градусам.
Проведем высоту ВН к большему основанию.
Высота равнобедренного треугольника, проведенная к большему основанию, делит его на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме.
АН=(AD-BC):2=1
HD=(BC+AD):2=4
Из прямоугольного ∆ АВН по т.Пифагора высота
ВН=√(AB²-AH²)=√48=4√3
Из прямоугольного ∆ DBH диагональ
ВD=√(BH²+HD²)=√(48+16)=8 см (диагонали равнобедренной трапеции равны, ⇒ АС=8 см)
Площадь трапеции равна произведению высоты на полусумму оснований.
S=4√3•4=16√3 см*