З точки А, що лежить поза колом з центром у точці О, проведено дотичні АВ і АС ( В і С – точки дотику). ∠ВАС=60°. Знайти ОА, якщо довжина радіуса дорівнює 15см.
ответ:Треугольник ЕDF согласно условию является равнобедренным,и по определению его боковые стороны равны между собой и равны углы при основании.
Если из вершины D на основание ЕF мы опустим перпендикуляр,а это и медиана и биссектриса,то получим два прямоугольных треугольника,которые равны между собой по третьему признаку равенства треугольников
ЕD=DF по условию ,как боковые стороны равнобедренного треугольника
EA=AF,т к DA медиана и она поделила основание треугольника ЕF на два равных отрезка
DA-общая сторона
Рассмотрим треугольник ЕDA
<DAE=90 градусов,т к DA высота и опущена на основание перпендикулярно
Зная гипотенузу треугольника DE (12 cм) и катет (5:2=2,5 см) вычислим углы треугольника
<E=78 градусов
<ЕDA=12 градусов
Т к DA является и биссектрисой угла D,то <D=12+12=24 градуса
Так как <Е=<F, то и <F=78 градусов
Проверка
78+78+24=180 градусов
ответы на вопросы
1.Угол D меньше суммы углов при основании E и F
2.Угол D не больше суммы углов при основании Е и F
Отношение катета МЕ и гипотенузы ВЕ=3:5, значит, второй катет⊿ МВЕ (египетского) равен 8 см (и по т.Пифагора ВМ=8 см). По условию ВС - перпендикуляр к плоскости треугольника, следовательно, перпендикулярен ВЕ и ВМ. Расстояние от точки до прямой равно длине отрезка, проведенного перпендикулярно из точки к этой прямой. ВМ⊥МЕ и является проекцией наклонной СМ. По т. о 3-х перпендикулярах СМ⊥МЕ и является искомым расстоянием. ВМ=8 см, СВ=6 см ⇒ ∆ ВСМ - египетский. СМ=10 см ( можно проверить по т.Пифагора).
ответ:Треугольник ЕDF согласно условию является равнобедренным,и по определению его боковые стороны равны между собой и равны углы при основании.
Если из вершины D на основание ЕF мы опустим перпендикуляр,а это и медиана и биссектриса,то получим два прямоугольных треугольника,которые равны между собой по третьему признаку равенства треугольников
ЕD=DF по условию ,как боковые стороны равнобедренного треугольника
EA=AF,т к DA медиана и она поделила основание треугольника ЕF на два равных отрезка
DA-общая сторона
Рассмотрим треугольник ЕDA
<DAE=90 градусов,т к DA высота и опущена на основание перпендикулярно
Зная гипотенузу треугольника DE (12 cм) и катет (5:2=2,5 см) вычислим углы треугольника
<E=78 градусов
<ЕDA=12 градусов
Т к DA является и биссектрисой угла D,то <D=12+12=24 градуса
Так как <Е=<F, то и <F=78 градусов
Проверка
78+78+24=180 градусов
ответы на вопросы
1.Угол D меньше суммы углов при основании E и F
2.Угол D не больше суммы углов при основании Е и F
3.Угол D не больше угла Е и не больше угла F
4.Угол D меньше угла Е и меньше угла F
Объяснение:
Отношение катета МЕ и гипотенузы ВЕ=3:5, значит, второй катет⊿ МВЕ (египетского) равен 8 см (и по т.Пифагора ВМ=8 см). По условию ВС - перпендикуляр к плоскости треугольника, следовательно, перпендикулярен ВЕ и ВМ. Расстояние от точки до прямой равно длине отрезка, проведенного перпендикулярно из точки к этой прямой. ВМ⊥МЕ и является проекцией наклонной СМ. По т. о 3-х перпендикулярах СМ⊥МЕ и является искомым расстоянием. ВМ=8 см, СВ=6 см ⇒ ∆ ВСМ - египетский. СМ=10 см ( можно проверить по т.Пифагора).