1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
ответ: 1,6 см; 3,6 см; 5,2 см.
Объяснение:
Назовём треугольник АВС; угол С=90°, АС:СВ=3:2, АН=ВН+2.
Примем ВН=х, АН=х+2.
Каждый катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу: ⇒
АС²=АВ•АН=(х+х+2)•(х+2)=2•(х+1)•(х+2)
ВС²=АВ•ВН=(х+х+2)•х=2•(х+1)•х
По условию АС:ВС=3:2 => АС²:ВС²=3²:2²= 9:4
Подставим найденные выше значения катетов в пропорцию:
2•(х+1)•(х+2):2•(х+1)•х=9:4⇒
(х+2):х=9:4
5х=8 ⇒
BH=х=1,6
AН=1,6+2=3,6 см
АВ=2х+2=5,2 см
АС=√(5,2•3,6)=6√52
BC=√(5,5•1,6)=4√52