Один із кутів отриманих при перетині дорівнює третині суміжних кутів знайдіть їх усіх!
ответ
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
2. Розв'яжіть нерівність
А. (−∞;−25)
Б. (−∞;−1)
В. (−∞; 25)
Г. (−1;+∞)
Д. (−25;+∞)
Розв'зання: Домножимо ліву і праву частину нерівності на 5:
-x>25
Домноживши праву та ліву частину нерівності на (-1), пам'ятаючи про знак:
x<-25;
Зрозуміло, що x<-25, тобто А.
Відповідь: А. (−∞;−25)
Автор: Евгений Ткаченко на понедельник, апреля 10, 2017 Комментариев нет:
Отправить по электронной почте
Написать об этом в блоге
Опубликовать в Twitter
Опубликовать в Facebook
Поделиться в Pinterest
зно 2017 пробне з математики № 1
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
1. Різниця двох кутів, отриманих при перетині двох прямих (див. рисунок), дорівнює 120∘. Визначте градусну міру кута α.
А. 30∘
Б. 100∘
В. 120∘
Г. 140∘
Д. 150∘
Розв'зання: При перетині двох прямих, утворюються суміжні та вертикальні кути. Оскільки різниця не 0,то кути не вертикальні, тобто суміжні. Нехай один кут х, тоді інший 120+х. Як відомо, сума суміжних кутів дорівнює 180 градусів. Тому складемо рівняння:
х+х+120=180
2х=180-120
2х=60
х=30, інший кут 120+30=150.
Як видно, з малюнка шуканий кут тупий, тому він деревню 150 градусів.
Величина угла между плоскостями – угол, сторонами которого являются лучи, по которым эти плоскости пересекаются плоскостью, перпендикулярной ребру угла.
Искомый угол –это угол DHC, образованный отрезками СН и DH (см. рисунок в приложении).
СН - высота ∆ АВС, DC –⊥ плоскости ∆ АВС по условию, DH ⊥ АВ по т. о трёх перпендикулярах,
плоскость DHC перпендикулярна АВ.
СН как катет ∆ АНС, противолежащий углу 30º, равен половине гипотенузы АС и равен а/2
Тангенс угла DHC=DC/HC=[(а√3):2]:a/2=√3.
Это тангенс угла, равного 60º.
Угол между плоскостью (ADB) и плоскостью (ACB)=60º.
Один із кутів отриманих при перетині дорівнює третині суміжних кутів знайдіть їх усіх!
ответ
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
2. Розв'яжіть нерівність
А. (−∞;−25)
Б. (−∞;−1)
В. (−∞; 25)
Г. (−1;+∞)
Д. (−25;+∞)
Розв'зання: Домножимо ліву і праву частину нерівності на 5:
-x>25
Домноживши праву та ліву частину нерівності на (-1), пам'ятаючи про знак:
x<-25;
Зрозуміло, що x<-25, тобто А.
Відповідь: А. (−∞;−25)
Автор: Евгений Ткаченко на понедельник, апреля 10, 2017 Комментариев нет:
Отправить по электронной почте
Написать об этом в блоге
Опубликовать в Twitter
Опубликовать в Facebook
Поделиться в Pinterest
зно 2017 пробне з математики № 1
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
1. Різниця двох кутів, отриманих при перетині двох прямих (див. рисунок), дорівнює 120∘. Визначте градусну міру кута α.
А. 30∘
Б. 100∘
В. 120∘
Г. 140∘
Д. 150∘
Розв'зання: При перетині двох прямих, утворюються суміжні та вертикальні кути. Оскільки різниця не 0,то кути не вертикальні, тобто суміжні. Нехай один кут х, тоді інший 120+х. Як відомо, сума суміжних кутів дорівнює 180 градусів. Тому складемо рівняння:
х+х+120=180
2х=180-120
2х=60
х=30, інший кут 120+30=150.
Як видно, з малюнка шуканий кут тупий, тому він деревню 150 градусів.
Відповідь: Д. 150∘
Величина угла между плоскостями – угол, сторонами которого являются лучи, по которым эти плоскости пересекаются плоскостью, перпендикулярной ребру угла.
Искомый угол –это угол DHC, образованный отрезками СН и DH (см. рисунок в приложении).
СН - высота ∆ АВС, DC –⊥ плоскости ∆ АВС по условию, DH ⊥ АВ по т. о трёх перпендикулярах,
плоскость DHC перпендикулярна АВ.
СН как катет ∆ АНС, противолежащий углу 30º, равен половине гипотенузы АС и равен а/2
Тангенс угла DHC=DC/HC=[(а√3):2]:a/2=√3.
Это тангенс угла, равного 60º.
Угол между плоскостью (ADB) и плоскостью (ACB)=60º.