Задача: Дан ΔABC — равнобедренный, AC = BC = 10, AB = 16. Найти tg A, sin A.
Проведем высоту CH в ΔABC к стороне AB. Образуется два равных треугольника, т.к. ΔABC равнобедренный. AH = HB = 16/2 = 8.
Р-м ΔACH:
∠AHC = 90°, т.к CH — перпендикуляр к AH (AH∈AB) ⇒ ΔACH — прямоугольный.
Синус угла равен отношению противолежащего катета к гипотенузе.
Найдем катет CH за т. Пифагора:
Тогда синус ∠A будет равен:
Тангенс угла равен отношению противолежащего катета к прилежащему:
ответ: tg A = 0,75; sin A = 0,6.
DВ = 21,65см
Объяснение:
Проведём радиусы ОА⊥АВ, ОС⊥ВD и ОЕ⊥DЕ, а также соединим центр окружности О с точками В и D. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСD и ОЕD.
ΔОАВ = ΔОСВ (сторона ОВ - общая; ОА = ОС = R-радиусу)
Отсюда следует, что АВ = ВС = х(обозначение х для простоты письма)
ΔОСD = ΔОЕD (сторона ОD - общая; ОЕ = ОС = R-радиусу)
Отсюда следует, что СD = DЕ = у(обозначение у для простоты письма)
Нам нужно найти DВ = ВС + СD = х + у
Длина ломаной АВDС = АВ + ВС + СD + DЕ = 2х + 2у = 43,3см (по условию. Отсюда:
х + у = 43,3 : 2
х + у = 21,65(см)
Задача: Дан ΔABC — равнобедренный, AC = BC = 10, AB = 16. Найти tg A, sin A.
Проведем высоту CH в ΔABC к стороне AB. Образуется два равных треугольника, т.к. ΔABC равнобедренный. AH = HB = 16/2 = 8.
Р-м ΔACH:
∠AHC = 90°, т.к CH — перпендикуляр к AH (AH∈AB) ⇒ ΔACH — прямоугольный.
Синус угла равен отношению противолежащего катета к гипотенузе.
Найдем катет CH за т. Пифагора:
Тогда синус ∠A будет равен:
Тангенс угла равен отношению противолежащего катета к прилежащему:
ответ: tg A = 0,75; sin A = 0,6.
DВ = 21,65см
Объяснение:
Проведём радиусы ОА⊥АВ, ОС⊥ВD и ОЕ⊥DЕ, а также соединим центр окружности О с точками В и D. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСD и ОЕD.
ΔОАВ = ΔОСВ (сторона ОВ - общая; ОА = ОС = R-радиусу)
Отсюда следует, что АВ = ВС = х(обозначение х для простоты письма)
ΔОСD = ΔОЕD (сторона ОD - общая; ОЕ = ОС = R-радиусу)
Отсюда следует, что СD = DЕ = у(обозначение у для простоты письма)
Нам нужно найти DВ = ВС + СD = х + у
Длина ломаной АВDС = АВ + ВС + СD + DЕ = 2х + 2у = 43,3см (по условию. Отсюда:
х + у = 43,3 : 2
х + у = 21,65(см)