1. Так как DE-биссектриса угла D, то углы CDE и ADE будут равны между собой по 60 градусов. 2. В параллелограмме противоположные стороны попарно параллельны. Отрезок BE принадлежит BC, а BC параллельна AD, следовательно BE будет параллелен AD. 3. Работаем в четырехугольнике ABED: боковые стороны AB и ED не параллельны друг другу, а BE и AD параллельны(из 2), отсюда следует, что ABED-трапеция(по определению), но угол А равен 60 градов по условию, а угол EDA также равен 60 градусов(так как ED-биссектриса), следовательно ABED-равноберенная трапеция. 4. Работаем в треугольнике DEC: угол CDE в нем равен 60 градусов(из 1), а угол DCE будет равен углу А, т.е. 60 градусов(свойство параллелограмма). Отсюда следует, что треугольник DEC-равносторонний, тогда сторона EC будет равна 6. 5.BE=BC-EC=6 6.Высоту BH найдем из прямоугольного треугольника ABH, она будет равна 3 корня из 3. Площадь будет равна 36 корней из 3, а вторая высота 6 корней из 3. 7. Радиус описанной окружности около треугольника CDE равен 2 корня из 3. Тогда длина окружности будет равна 4 корня из 3 8. Большую диагональ можно найти через теорему косинусов, она будет равна 6 корней из 7. ОТВЕТ:1);; 2)Равносторонний; 3)
Вариант 1. Уровень А. 1. в) Одну. 2. а) MN = KN 3. в) В - середина АD 4. б) N∈MK 5. б) ∠АОМ = ∠РОА 6. а) 48° и 132° 7. в) (рисунок во вложении) 8. б) прямой 9. б) Если биссектрисы двух углов перпендикулярны, то эти углы смежные.
Уровень В. 1. 180° - 113° = 67° 2. 12,3 - 5,7 = 6,6 см 3. 6,1 : 2 = 3,05 см 4. (140° - 20°) : 2 = 60° 5. 24 : 2 = 12 см 6. 180° - (56° : 2) = 180° - 28° = 152°
Вариант 2. Уровень А. 1. в) Одну 2. в) 2 АВ = МВ 3. в) B – середина АD 4. а) С∈АВ 5. в) ∠ АОМ = ∠ КOМ 6. в) 93° и 77° 7. в) (рисунок во вложении) 8. а) острый 9. б) Если углы прямые, то они смежные
Уровень В. 1. 180° - 132° = 48° 2. 5,2 - 3,6 = 1,6 см 3. 2,8 · 2 = 5,6 см 4. 120° : 6 = 20° 5. 12 : 2 = 6 см 6. (180° - 124°) · 2 = 56° · 2 = 112°
2. В параллелограмме противоположные стороны попарно параллельны. Отрезок BE принадлежит BC, а BC параллельна AD, следовательно BE будет параллелен AD.
3. Работаем в четырехугольнике ABED: боковые стороны AB и ED не параллельны друг другу, а BE и AD параллельны(из 2), отсюда следует, что ABED-трапеция(по определению), но угол А равен 60 градов по условию, а угол EDA также равен 60 градусов(так как ED-биссектриса), следовательно ABED-равноберенная трапеция.
4. Работаем в треугольнике DEC: угол CDE в нем равен 60 градусов(из 1), а угол DCE будет равен углу А, т.е. 60 градусов(свойство параллелограмма). Отсюда следует, что треугольник DEC-равносторонний, тогда сторона EC будет равна 6.
5.BE=BC-EC=6
6.Высоту BH найдем из прямоугольного треугольника ABH, она будет равна 3 корня из 3. Площадь будет равна 36 корней из 3, а вторая высота 6 корней из 3.
7. Радиус описанной окружности около треугольника CDE равен 2 корня из 3. Тогда длина окружности будет равна 4 корня из 3
8. Большую диагональ можно найти через теорему косинусов, она будет равна 6 корней из 7.
ОТВЕТ:1);;
2)Равносторонний;
3)
Уровень А.
1. в) Одну.
2. а) MN = KN
3. в) В - середина АD
4. б) N∈MK
5. б) ∠АОМ = ∠РОА
6. а) 48° и 132°
7. в) (рисунок во вложении)
8. б) прямой
9. б) Если биссектрисы двух углов перпендикулярны, то эти углы смежные.
Уровень В.
1. 180° - 113° = 67°
2. 12,3 - 5,7 = 6,6 см
3. 6,1 : 2 = 3,05 см
4. (140° - 20°) : 2 = 60°
5. 24 : 2 = 12 см
6. 180° - (56° : 2) = 180° - 28° = 152°
Вариант 2.
Уровень А.
1. в) Одну
2. в) 2 АВ = МВ
3. в) B – середина АD
4. а) С∈АВ
5. в) ∠ АОМ = ∠ КOМ
6. в) 93° и 77°
7. в) (рисунок во вложении)
8. а) острый
9. б) Если углы прямые, то они смежные
Уровень В.
1. 180° - 132° = 48°
2. 5,2 - 3,6 = 1,6 см
3. 2,8 · 2 = 5,6 см
4. 120° : 6 = 20°
5. 12 : 2 = 6 см
6. (180° - 124°) · 2 = 56° · 2 = 112°