Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
2.
AO = OB (радиусы), а один угол 60°, значит другие две также по 60, значит треугольник равносторонний. Таким образом х = 8.
ответ: 8.
4.
Весь круг - 360°
Дуга KL = 360° - 143° - 77° = 140°
Угол х опирается на эту дугу и он вписанный, значит равен половине дуги:
х = 140°/2 = 70°
ответ: 70°
6.
KN - диаметр, значит дуга KMN равна 180 градусам.
Дуга МК равна 180° - 124° = 56°
Угол MNK вписанный, равен половине дуги МК
х = 56°/2 = 28°
ответ: 28°
8.
Дуга МК равна 360° - 46° - 112° = 202°
х равен половине дуги МК
х = 101°
ответ: 101°
Задачи 4,6,8 однотипные
Объяснение:
Осевое сечение конуса - равнобедренный треугольник с боковыми сторонами (образующие конуса), основание - диаметр основания.
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
S=h²/√3=8²/√3=64/√3=64√3/3.