Треугольник с заданными сторонами имеет совершенно определённые углы, которые можно вычислить по теореме косинусов. Но можно обойтись и без этой теоремы. Угол в 97 градусов тупой, значит треугольник должен быть тупоугольным. Стоит доказать, что наш треугольник не такой и дело сделано, тем более, что нас не просили вычислить его углы. Наибольший угол в треугольнике лежит напротив наибольшей стороны - это 8 см. Теперь, по теореме Пифагора c²=a²+b²=5²+7²=25+49=74, с=√74≈8.6 см. Прямоугольный треугольник с катетами 5 и 7 см должен иметь гипотенузу в 8.6 см, а у нас сторона всего 8 см. Не хватает длины - не хватает градусов, значит наибольший угол этого треугольника - острый, то есть он меньше 97 градусов. Вот и всё!. ответ: не может.
Плоскости (ABC) и (FCB) пересекаются по ребру ВС. Необходимо найти прямые перпендикулярные этому ребру.
1)АС⊥ВС , по условию⇒FС⊥ВС по т. о трех перпендикулярах. Значит ∠АСF-линейный угол данного двугранного.
2) Пусть в ΔАВС-равнобедренном АК⊥ВС, тогда FК⊥ВС по т. о трех перпендикулярах. Значит ∠АКF-линейный угол данного двугранного.
3) В тупоугольном ΔАВС , высота АМ "упадет" на продолжение стороны ВС . Тогда FМ⊥ВС по т. о трех перпендикулярах. Значит ∠АМF-линейный угол данного двугранного.
Объяснение:
AF ⊥ (ABC) ; 1)ΔАВС прямоугольный, угол C=90° ; 2)ΔАВС равнобедренный AB=AC ; 3) ΔАВС тупоугольный, угол C>90°.
Определить линейный угол угол между (ABC) и (FCB)
Решение.
Плоскости (ABC) и (FCB) пересекаются по ребру ВС. Необходимо найти прямые перпендикулярные этому ребру.
1)АС⊥ВС , по условию⇒FС⊥ВС по т. о трех перпендикулярах. Значит ∠АСF-линейный угол данного двугранного.
2) Пусть в ΔАВС-равнобедренном АК⊥ВС, тогда FК⊥ВС по т. о трех перпендикулярах. Значит ∠АКF-линейный угол данного двугранного.
3) В тупоугольном ΔАВС , высота АМ "упадет" на продолжение стороны ВС . Тогда FМ⊥ВС по т. о трех перпендикулярах. Значит ∠АМF-линейный угол данного двугранного.