Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°
2) с²=а²+в²⇒в²=с²-а²; в²= 8²-3²=√64-√9=√55;
3)АО= АС=[tex] \frac{1}{2} *6=3 см;
ВО=[tex] \frac{1}{2} ВD= [tex] \frac{1}{2} *8= 4 см;(рис.1)
4)пусть а=5см b =4 см с- диагональ по теореме пифагора с²=a²+b²= √25+√16=√41;
5)По формуле герона площадь равна
p - полупериметр, a, b, c - стороны(рис.2);
6)Рисуем трапецию АВСД
ВС = 6 см
АD = 14 см
АВ = СD = 5 см
Из вершины В опускаем высоту ВК.
АК = (АD - ВС) / 2 = (14 - 6) / 2 = 4 см
По теореме Пифагора высота
ВК = √AB² - √AK² = √(5² - 4²) = 3 см
Площадь
S = (АD + ВС) * ВК / 2 = (14 + 6) * 3 / 2 = 30 кв. см