Сходя из того, что по условию задачи любая апофема создаёт с высотой угол 45 градусов, то пирамида является правильной. Площадь боковой поверхности правильной пирамиды - S = 1/2 Pa, где P - периметр основания, a - апофема боковой грани. Апофема образует с высотой пирамиды и отрезком, проведенным из точки пересечения высоты и основания на сторону основания прямоугольный треугольник. Это следует из определения высоты пирамиды - она образует с плоскостью основания прямой угол.
Данный треугольник является равнобедренным, поскольку сумма углов треугольника равна 180 градусам, один из углов прямой, тогда 180 - 90 - 45 = 45. Поскольку оба угла равны - треугольник равнобедренный.
Таким образом, длина стороны основания равна удвоенной высоте пирамиды (треугольник равнобедренный, поэтому второй катет равен высоте пирамиды, а он же равен половине стороны, поскольку пирамида является правильной).
Исходя из того, что оба катета треугольника, образованного высотой пирамиды и отрезком, проведенным к боковой грани равны, то по теореме Пифагора апофема пирамиды равна
a = sqrt( 42 + 42 ) = sqrt( 32 ) = 4 sqrt( 2 ) , четыре корня из двух
Периметр равен 4 * 2 * 4 = 32 см, таким образом
S = 1/2 Pa = 1 / 2 * 32 * 4 sqrt( 2 ) = 64 sqrt( 2 ) , 64 корня из двух
треугольник АВН=треугольник КСД по гипотенузе и острому углу, АН=КД, НВСК-прямоугольник, НК=ВС=9, АН=КД=(АД-НК)/2=(21-9)/2=6
АВ=СД=корень (ВН в квадрате+АН в квадрате)=корень(64+36)=10
cosВ = АН/АВ=6/10=0,6
ВД-диагональ = корень(АВ в квадрате+АД в квадрате - 2* АВ*АД*cosВ)=
=корень(100+441-2*10*21*0,6)=17
sinВ=ВН/АВ=8/10=0,8
Радиус описанной окружности трапеции АВСД=радиусу описанной окружности треугольника АВД = ВД/2*sinB = 17/2*0.8 =10,625
Диаметр=10,625 * 2=21,25
Данный треугольник является равнобедренным, поскольку сумма углов треугольника равна 180 градусам, один из углов прямой, тогда 180 - 90 - 45 = 45. Поскольку оба угла равны - треугольник равнобедренный.
Таким образом, длина стороны основания равна удвоенной высоте пирамиды (треугольник равнобедренный, поэтому второй катет равен высоте пирамиды, а он же равен половине стороны, поскольку пирамида является правильной).
Исходя из того, что оба катета треугольника, образованного высотой пирамиды и отрезком, проведенным к боковой грани равны, то по теореме Пифагора апофема пирамиды равна
a = sqrt( 42 + 42 ) = sqrt( 32 ) = 4 sqrt( 2 ) , четыре корня из двух
Периметр равен 4 * 2 * 4 = 32 см, таким образом
S = 1/2 Pa = 1 / 2 * 32 * 4 sqrt( 2 ) = 64 sqrt( 2 ) , 64 корня из двух
ответ: 64 корня из двух