Уравнение окружности имеет вид , где и - координаты центра окружности, а - её радиус.
Координаты центра заданной окружности (2; 6).
1. То, что окружность касается оси Ох, значит, что её радиус равен расстоянию от центра окружности до оси абсцисс. На оси Ох ордината равна нулю, а значит, радиус окружности равен 6. Таким образом, уравнение окружности в этом случае: .
2. То, что окружность касается оси Оy, значит, что её радиус равен расстоянию от центра окружности до оси ординат. На оси Oy абсцисса равна нулю, а значит, радиус окружности равен 2. Таким образом, уравнение окружности в этом случае: .
Объяснение:
1. Угол MAC = 30°
Нам дан РАВНОСТОРОННИЙ треугольник, следовательно каждый его угол = 60°.
АМ в таком треугольнике будет являться и медианой, и высотой, и БИССЕКТРИСОЙ.
Если АМ биссектриса, значит она разделит угол ВАС пополам, сделовательно 60÷2 = 30°
2. Для начала разберёмся, что такое растояние от М до АС.
Растояние от М до АС это перпендикуляр, опущенный от М к АС (пусть этот отрезок будет МО).
У нас получается прямоугольный треугольник АМО.
АМ - гипотенуза, МО и АО - катеты.
Угол МАС мы нашли, он равен 30°.
Отсюда вытекает правило : катет, лежащий против угла в 30° равен половине гипотенузы.
Следовательно : МО = АМ ÷ 2 = 25 ÷ 2 = 12,5(см)
Уравнение окружности имеет вид , где и - координаты центра окружности, а - её радиус.
Координаты центра заданной окружности (2; 6).
1. То, что окружность касается оси Ох, значит, что её радиус равен расстоянию от центра окружности до оси абсцисс. На оси Ох ордината равна нулю, а значит, радиус окружности равен 6. Таким образом, уравнение окружности в этом случае: .
2. То, что окружность касается оси Оy, значит, что её радиус равен расстоянию от центра окружности до оси ординат. На оси Oy абсцисса равна нулю, а значит, радиус окружности равен 2. Таким образом, уравнение окружности в этом случае: .