Пусть M – середина большей боковой стороны CD прямоугольной трапеции ABCD с основаниями BC < AD , N – середина меньшей боковой стороны AB , а треугольники BCM , AMB и AMD – равнобедренные. По теореме о средней линии трапеции MN || BC , и т.к. AB BC , то MN AB . Медиана MN треугольника AMB является его высотой, значит, этот треугольник равнобедренный, причём < BAM = < ABM . Угол BCD – тупой, значит, это угол при вершине равнобедренного треугольника BCM Обозначим < CBM = < CMB = ? . Тогда
< AMD = 180o - < BMC - < AMB = 180o-3?, < DAM = < AMN = ?.
Предположим, что AD=DM . Тогда < DAM = < AMD , или ? = 180o-3? , т.е. 2? = 90o , что невозможно. Пусть теперь AM=MD . Тогда < DAM = < ADM , или ? = 3? , т.е. ? = 0o , что также невозможно. Если же AD = AM , то
< ADM= < AMD , или 180o-3?= 2? , откуда находим, что ? = 36o . Следовательно, < ADC = 2? = 72o .
Пусть M – середина большей боковой стороны CD прямоугольной трапеции ABCD с основаниями BC < AD , N – середина меньшей боковой стороны AB , а треугольники BCM , AMB и AMD – равнобедренные. По теореме о средней линии трапеции MN || BC , и т.к. AB BC , то MN AB . Медиана MN треугольника AMB является его высотой, значит, этот треугольник равнобедренный, причём < BAM = < ABM . Угол BCD – тупой, значит, это угол при вершине равнобедренного треугольника BCM Обозначим < CBM = < CMB = ? . Тогда
< BCM = 180o - 2?, < ADC = 180o - < BCM = 180o-(180o - 2?)=2?,
< BMN = < MBC = ?, < AMB = 2 < BMN = 2?,
< AMD = 180o - < BMC - < AMB = 180o-3?, < DAM = < AMN = ?.
Предположим, что AD=DM . Тогда < DAM = < AMD , или ? = 180o-3? , т.е. 2? = 90o , что невозможно. Пусть теперь AM=MD . Тогда < DAM = < ADM , или ? = 3? , т.е. ? = 0o , что также невозможно. Если же AD = AM , то
< ADM= < AMD , или 180o-3?= 2? , откуда находим, что ? = 36o . Следовательно, < ADC = 2? = 72o .
ответ: 72o .
1. 15 см.
2. 32 см, 40 см.
3. 34 см.
4. ???
5. 34 см.
6. 14 см.
Объяснение:
1. Отрезки соединяющие середины сторон треугольника являются его средними линиями и равны половине стороны ей параллельной.
Получим треугольник А1В1С1.
Р(АВС)=8+10+12=30 см.
Р(А1В1С1)=Р(АВС)/2=30/2=15 см.
***
2. MN - средняя линия трапеции. MN=(ВС+AD)/2=36;
Пусть ВС=4х. Тогда AD=5x.
(4x+5x)/2=36;
9x=72;
x=8.
ВС=4х=4*8=32 см.
AD=5x=5*8=40 см.
Проверим:
MN=(32+40)/2=72/2=36 см. Всё верно!
***
3. В трапецию можно вписать окружность, если сумма оснований равна сумме его боковых сторон.
АВ+CD=BC+AD=P/2.
BC+AD=P/2;
5+12=P/2;
17=P/2;
P=17*2=34 см.
***
4. ???
***
5. ∠BAC=∠DAC- AC — биссектриса .
∠BCA=∠DAC (как внутренние накрест лежащие при AD ∥ BC и секущей AC). Значит, ∠BAC=∠BCA ; треугольник ABC — равнобедренный с основанием AC. АВ=CD=8 см.
Р(АВСD)=8+10+8+8=34 см.
***
6. Если в трапеции диагонали перпендикулярны, то ее высота равна средней линии. ВЕ=MN=(BC+AD)/2.
BC+AD=2MN=2*10 =20 см .
Высота H=10 см.
Р(ABCD)=48 см.
Р=2AB+ВС+AD.
2AB=48-20=28.
АВ=CD=28/2=14 см.