30 см, 40 см.
Объяснение:
Дано: ΔАВС - прямоугольный, ∠АВС=90°, ВН - высота, АН=18 см, СН=32 см. Найти АВ и ВС.
Высота в прямоугольном треугольнике, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника.
ΔАВН подобен ΔСВН, из чего следует, что
ВН=√(АН*НС)=√(18*32)=√576=24 см.
По теореме Пифагора
АВ=√(АН²+ВН²)=√(324+576)=√900=30 см.
ВС=√(ВН²+СН²)=√(576+1024)=√1600=40 см.
30 см, 40 см.
Объяснение:
Дано: ΔАВС - прямоугольный, ∠АВС=90°, ВН - высота, АН=18 см, СН=32 см. Найти АВ и ВС.
Высота в прямоугольном треугольнике, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника.
ΔАВН подобен ΔСВН, из чего следует, что
ВН=√(АН*НС)=√(18*32)=√576=24 см.
По теореме Пифагора
АВ=√(АН²+ВН²)=√(324+576)=√900=30 см.
ВС=√(ВН²+СН²)=√(576+1024)=√1600=40 см.