Высота прямого цилиндра равна 5 cm а радиус основания 4 cm. Точки А и
В, взятые на боковой поверхности,
расположены от нижнего основания
на расстоянии 2 cm и 3 cm. Найдите
наименьшее расстояние (cm) от оси
цилиндра до отрезка AB, если длина
АВ равна 5 cm.
Объяснение:
1. ОДЗ: х ∈ R
или х ∈ (-∞; +∞)
2. Четность, нечетность.
y(-x) = y(x) ⇒ четная
3. Пересечение с осями.
1) х = 0 ⇒ у = 2
2) у > 0 ⇒ ось 0х не пересекает.
4. Асимптоты.
1) Вертикальных асимптот нет.
2) Наклонная: y = kx + b
y = 0 - горизонтальная асимптота.
5. Возрастание, убывание, экстремумы.
Найдем производную:
Приравняем к 0 и найдем корни:
Найдем знаки производной на промежутках. Если "+" - возрастает, "-" - убывает.
Возрастает при х ∈ (-∞; 0]
Убывает при х ∈ [0; +∞)
См. рис.
6. Выпуклость, вогнутость.
Найдем производную второго порядка.
Приравняем к 0 и найдем корни:
Заменим переменную:
t > 0 ⇒ x² = 1
x₁ = 1; x₂=-1
Найдем знаки второй производной на промежутках.
( См. рисунок.)
x перегиба = ±1
При х ∈ (-∞; -1] ∪ [1; +∞) - вогнута;
при х ∈ [-1; 1] - выпукла.
Строим график.
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42