Высота цилиндра равна 6 см, радиус его основания 10 см. найдите площадь сечения цилиндра плоскостью, параллельной его оси, учитывая, что расстояние между этими плоскостью и осью равно 6 см
Пусть центр верхнего основания O, а ABCD - это плоскость сечения. Отрезок AB принадлежит верхнему основанию, CD - нижнему. Так как рассматриваемая фигура - цилиндр, то AD=BC=6см
Чтобы найти площадь сечения, надо найти AB.
Рассмотрим верхнее основание. Построим из точки O перпендикуляр к отрезку AB. Пусть K - точка пересечения перпендикуляра и AB. По условию, OK=6см
А так как треугольник AOB - равнобедренный, то AK=BK
Рассмотрим треугольник OAK. Он прямоугольный, угол AKO=90 градусов
Пусть центр верхнего основания O, а ABCD - это плоскость сечения. Отрезок AB принадлежит верхнему основанию, CD - нижнему. Так как рассматриваемая фигура - цилиндр, то AD=BC=6см
Чтобы найти площадь сечения, надо найти AB.
Рассмотрим верхнее основание. Построим из точки O перпендикуляр к отрезку AB. Пусть K - точка пересечения перпендикуляра и AB. По условию, OK=6см
А так как треугольник AOB - равнобедренный, то AK=BK
Рассмотрим треугольник OAK. Он прямоугольный, угол AKO=90 градусов
По теореме Пифагора
Из условия задачи OA=10см
Находим AK:
AB=2*AK=16см
Находим площадь сечения:
S=AB*AD=16*6=96см^2
ответ: площадь сечения равна 96см^2.