Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
ответ:S=12P⋅h,S=12⋅9⋅7√2=97√4
Объяснение:
найдем сторону основания правильной пирамиды по формуле a = R√3, a = √ · √ = 3
найдем периметр основания Р = 3·а, Р = 9
радиус вписанной в правильный треугольник окружности в 2 раза меньше радиуса описанной около этого треугольника окружности, т.е. R = 2r, тогда OP=3√2
из прямоугольного треугольника МОР по теореме Пифагора находим апофему МР: MP=MO2+OP2−−−−−−−−−−√,
МР=1+|3√2|2−−−−−−−−√=1+34−−−−−√=7√2
вычислим площадь боковой поверхности правильной пирамиды: S=12P⋅h,S=12⋅9⋅7√2=97√4
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).