Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
Как решить уравнение
Ваше уравнение
1
−
8
(
3
−
2
)
=
2
(
1
−
)
1-8(3-2y)=2(1-y)
1−8(3−2y)=2(1−y)
Вычисление значения
1
Переставьте члены уравнения
1
−
8
(
3
−
2
)
=
2
(
1
−
)
1
−
8
(
−
2
+
3
)
=
2
(
1
−
)
2
Раскройте скобки
1
−
8
(
−
2
+
3
)
=
2
(
1
−
)
1
+
1
6
−
2
4
=
2
(
1
−
)
3
Вычтите числа
1
+
1
6
−
2
4
=
2
(
1
−
)
−
2
3
+
1
6
=
2
(
1
−
)
4
Переставьте члены уравнения
−
2
3
+
1
6
=
2
(
1
−
)
1
6
−
2
3
=
2
(
1
−
)
5
Переставьте члены уравнения
1
6
−
2
3
=
2
(
1
−
)
1
6
−
2
3
=
2
(
−
+
1
)
Ещё 7 шагов
Решение
=
2
5
1
8
Объяснение:
Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12
Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед²
Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2
Площадь трапеции: Sт=h(a+b)/2=6√2
Общая площадь: Sобщ=Sт+Sбок=30+6√2
ответ: a. 30+6