В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Destorshka
Destorshka
20.07.2022 13:37 •  Геометрия

Вычислить координаты точки пересечения перпендикуляров, восстановленных из середин сторон треугольника, вершинами которого служат точки a (-4,3), b (0; 7), c (8; -1)

Показать ответ
Ответ:
fhnkyc
fhnkyc
04.10.2020 21:06
 Расчет длин сторон:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √32 ≈  5.656854249,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √128 ≈11.3137085, 
AC = √((Хc-Хa)²+(Ус-Уa)²) = √160 ≈12.64911064.
Отсюда видим, что треугольник прямоугольный - сумма квадратов двух сторон (32+128=160) равна квадрату третьей стороны (160).

Точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, - это центр описанной окружности.

В прямоугольном треугольнике центр описанной окружности находится на середине гипотенузы. У нас это АС.
Находим координаты точки О как середины отрезка АС:
О((-4+8)/2=2; (3-1)/2=1) = (2; 1).

ответ: точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, имеет координаты (2; 1).

p.s.  В общем случае надо было находить уравнения срединных перпендикуляров (достаточно двух), затем найти точку их пересечения.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота