Противоположные стороны параллелограмма равны (свойство параллелограмма) => AB = CD, BC = AD,
Периметр равен сумме всех сторон, поскольку противоположные стороны равны, то периметр равен удвоенной сумме смежных сторон => P = 2(AB+BC) = 78см, 2(AB+BC) = 78см, AB+BC = 39см.
BK:KC = 3:7, BK = 3x, KC = 7x, BK + KC = 3x + 7x = 10x = BC.
Биссектрисса параллелограмма отсекает от него равнобедренный треугольник (свойство параллелограмма) => треуг. ABK — равнобедренный, AB = BK. =>
Угол САД = 180 - (угод Д + угол АСД) = 180 - (60 + 90) = 30 град
Угол ВАС = угол САД = 30 град (по условию)
Угол ВСА = угол САД = 30 град (свойства трапеции)
Следовательно угол ВАС = угол ВСА и треугольник АВС - равнобедренный
ВС = АВ = х
Угол А = угол ВАС + угол САД = 30 + 30 = 60 град
Следовательно угол А = угол Д и трапеция равнобедренная
СД = АВ = х
АД = СД / синус САД = х / синус 30 = х / (1/2) = 2х
Периметр трапеции
АВ + ВС + СД + АД = х + х + х + 2х = 35
5х = 35
х = 7
АВ = х = 7 см
Противоположные стороны параллелограмма равны (свойство параллелограмма) => AB = CD, BC = AD,
Периметр равен сумме всех сторон, поскольку противоположные стороны равны, то периметр равен удвоенной сумме смежных сторон => P = 2(AB+BC) = 78см, 2(AB+BC) = 78см, AB+BC = 39см.
BK:KC = 3:7, BK = 3x, KC = 7x, BK + KC = 3x + 7x = 10x = BC.
Биссектрисса параллелограмма отсекает от него равнобедренный треугольник (свойство параллелограмма) => треуг. ABK — равнобедренный, AB = BK. =>
AB = BK = 3x,
AB + BC = 3x + 10x = 13x = 39см, x = 3см.
AB = 3x = 3 × 3см = 9см,
BC = 10x = 10 × 3см = 30см.
ответ: AB = 9см, BC = 30см, CD = 9см, AD = 30см.