1). Сторона квадрата описанного около окружности равна диагонали квадрата вписанного в эту окружность. По т. Пифагора найдем длину диагонали - √(4²+4²)=4√2 см. Площадь квадрата - (4√2)²=32 см². 2). Площадь искомого треугольника получается при вычитании площади прямоугольника описанного вокруг него и трех прямоугольных треугольников. S(прям)=3*6=18 ед²; S(тр)1=3*2/2=3 ед²; S(тр)2=4*2/2=4 ед²; S(тр)3=1*6/2=3 ед²; S(тр)=18-3-4-3=8 ед²;
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
2). Площадь искомого треугольника получается при вычитании площади прямоугольника описанного вокруг него и трех прямоугольных треугольников.
S(прям)=3*6=18 ед²;
S(тр)1=3*2/2=3 ед²;
S(тр)2=4*2/2=4 ед²;
S(тр)3=1*6/2=3 ед²;
S(тр)=18-3-4-3=8 ед²;
4) ∪MD=L/360*90=2piR/4=piR/2=6.5pi
R/2=6.5; R=13
S(ABCD)=AD*OM=2R*R=2R^2=2*13^2=338 кв.см
3) (рисунок снизу)
Объяснение:
Решение
Первый Пусть указанные стороны равны a и 2a. Тогда по теореме косинусов квадрат третьей стороны равен
a2 + 4a2 - 2a . 2a . $\displaystyle {\textstyle\frac{1}{2}}$ = 3a2.
Пусть $ \alpha$ — угол данного треугольника, лежащий против стороны, равной 2a. Тогда по теореме косинусов
cos$\displaystyle \alpha$ = $\displaystyle {\frac{a^{2} + 3a^{2} - 4a^{2}}{2a\cdot a\sqrt{3}}}$ = 0.
Следовательно, $ \alpha$ = 90o.
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
BC1 = $\displaystyle {\textstyle\frac{1}{2}}$AB = BC.
Значит, точка C1 совпадает с точкой C. Следовательно, $ \angle$ACB = 90o.