P = 2x + y (x - боковые стороны, y - основание) y = 96, P = 196 - дано в условии, найдем x 2X=P-y x= (P-y)/2 x=50
итого: x = 50, y = 96 нам не хватает высоты, для нахождения площади. Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) по теореме Пифагора h = √(x^2 - (y/2)^2) h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h тогда: S=1/2*hy = 96*14/2 = 672. ответ: 672
лина меньшей диагонали д будет зависеть от меньшего угла параллелограмма, который равен: <А = (180° - 120°) = 60°., и от двух его сторон а и в. Используем формулу определения любой стороны в треугольнике с косинуса угла, и двух других сторон, где а и в - стороны параллелограмма. (Стороны а, в, и д составляют треугольник с углом А = 60°).
y = 96, P = 196 - дано в условии, найдем x
2X=P-y
x= (P-y)/2
x=50
итого: x = 50, y = 96
нам не хватает высоты, для нахождения площади.
Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана)
по теореме Пифагора
h = √(x^2 - (y/2)^2)
h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h
тогда: S=1/2*hy = 96*14/2 = 672.
ответ: 672
лина меньшей диагонали д будет зависеть от меньшего угла параллелограмма, который равен: <А = (180° - 120°) = 60°., и от двух его сторон а и в. Используем формулу определения любой стороны в треугольнике с косинуса угла, и двух других сторон, где а и в - стороны параллелограмма. (Стороны а, в, и д составляют треугольник с углом А = 60°).
д^2 = а^2 + в^2 + 2 а * в * соs < А = 3^2 + 4^2 + 2 * 3 * 4 * соs (60°) = 9 + 16 + 24 * 1/2 = 25 + 12 = 37 (см^2).
Меньшая диагональ д равна:
д = √(37) см.
Объяснение:
вроде так понела:3