Последний раз решала такие задачи в 7 классе. Могла что-то забыть. Назовем треугольник АВС. ВС - по условию гипотенуза, равная 13 см. Известно, что катеты относятся, как 5:12, тогда, АС = 5х (см), а АВ = 12 х (см). ( Условно разделив катеты на части, получаем, что 1 часть = х см). По теореме Пифагора: ВC в кв. = АС в кв. + АВ в кв. Составим и решим уравнение. 13 в кв. = 12х в кв. + 5х в кв; 169 = 144х в кв. + 25х в кв; 169 = 169х в кв. х в кв. = корень квадратный из 169:169; х = 1. Итак, АС= 5х1=5 (см); АВ = 12х1=12 (см)
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.
Назовем треугольник АВС. ВС - по условию гипотенуза, равная 13 см. Известно, что катеты относятся, как 5:12, тогда, АС = 5х (см), а АВ = 12 х (см). ( Условно разделив катеты на части, получаем, что 1 часть = х см). По теореме Пифагора: ВC в кв. = АС в кв. + АВ в кв. Составим и решим уравнение. 13 в кв. = 12х в кв. + 5х в кв; 169 = 144х в кв. + 25х в кв; 169 = 169х в кв. х в кв. = корень квадратный из 169:169; х = 1.
Итак, АС= 5х1=5 (см); АВ = 12х1=12 (см)