Трапеция равнобедренная, основания равны 10 и 20 боковая 13 опустим высоту из угла основания 10 к основанию 20 получим треугольник прямоугольный, повторим с двумя другими углами, получим прямоугольник у которого 2е стороны будут равны 10, большее основание равно 20 след, 20-10=10 т.к. боковые стороны = и высоты= след. треугольники равны поэтому 10/2=5 по теореме Пифагора катет=кор.квадратный из квадрата гипотенузы вычесть квадрат катета, т.е. высота=13в кв,-5в кв. высота равна 12 площадь трапеции находят по формуле половина суммы оснований на высоту получаем (10+20)/2*12=180 ответ: 180см
опустим высоту из угла основания 10 к основанию 20 получим треугольник прямоугольный, повторим с двумя другими углами, получим прямоугольник у которого 2е стороны будут равны 10, большее основание равно 20 след, 20-10=10
т.к. боковые стороны = и высоты= след. треугольники равны поэтому 10/2=5 по теореме Пифагора катет=кор.квадратный из квадрата гипотенузы вычесть квадрат катета, т.е. высота=13в кв,-5в кв. высота равна 12
площадь трапеции находят по формуле половина суммы оснований на высоту получаем (10+20)/2*12=180 ответ: 180см
Дано: ABCD - параллелограмм
AD = 7 дм
ВН = 6 дм - высота
Найти: Sabcd.
Решение:
Sabcd = AD · BH = 7 · 6 = 42 (дм²)
2.
Дано: ABCD - параллелограмм
Sabcd = 18 м²
AD = 3 м
ВН - высота, проведенная к AD.
Найти: BH.
Решение:
Sabcd = AD · BH
BH = Sabcd/AD = 18/3 = 6 (м)
3.
Дано: ΔАВС, АС = 7 дм,
ВН = 6 дм - высота
Найти: Sabc.
Решение:
Sabc = 1/2 · AC · BH
Sabc = 1/2 · 7 · 6 = 21 (дм²)
4.
Дано: ΔАВС, ∠А = 90°,
АВ = 4 дм, АС = 9 мм
Найти: Sabc.
Решение:
Sabc = 1/2 · AC · AB
AC = 9 мм = 0,09 дм
Sabc = 1/2 · 0,09 · 4 = 0,18 (дм²)
5.
Дано: ABCD - трапеция, AD║BC,
ВС = 6 см, AD = 9 см,
ВН = 4 см - высота.
Найти: Sabcd.
Решение:
Sabcd = (AD + BC)/2 · BH
Sabcd = (9 + 6)/2 · 4 = 30 (см²)