Выбрать верные утверждения.1) Возможны два случая взаимного расположения плоскостей: а) две плоскости пересекаются по прямой; б) две плоскости параллельны.2) Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.3) Две плоскости называются параллельными, если они не пересекаются.
Внутри треугольника АВС взята точка D такая, что угол ABD = угол ACD = 45°. Докажите, что отрезки AD и BC перпендикулярны и равны, если угол ВАС равен 45°
* * *
Продлим ВD до пересечения с АС в т.Н, а отрезок СD - до пересечения с АВ в т.К и проведем АМ через т.D.
∠АСD=45° по условию, Если ∠ВАС=45°, то ∠АКС=90° и ∆ АСК – равнобедренный прямоугольный. АК=СК.
В ∆ АВН два угла при АВ равны 45°⇒∠ВНА=90° и ∆ АВН - равнобедренный прямоугольный, Тогда точка D - пересечение высот СК и ВН треугольника АВС. Отрезок АМ, содержащий АD, проходит через точку пересечения высот, следовательно, является высотой и перпендикулярен ВС. Отсюда АD⊥ВС. Доказано.
Прямоугольные ⊿ АКD и ⊿ CMD подобны по равному углу при вершине D ( вертикальные) ⇒ ∠КАD=∠MCD.
Рассмотрим ⊿ АКD и ⊿ ВКС. Из ⊿ АКС их катеты АК=СК. Острые ∠КАD и ∠КСВ равны (из доказанного выше). Следовательно, ⊿ АКD=⊿ ВКС по катету и острому углу. Отсюда следует равенство гипотенуз этих треугольников. АD=ВС, ч.т.д.
ОА=ОС=х, ОВ=у.
1) 6²=х²+у²-2хуcos120°=x²+y²+xy=36.
2) 4²=x²+y²+2xycos60°=x²+y²-xy=16.
Вычтем из первого уравнения второе 2ху =20.
ху=10. у=10/х. Подставим в первое
х²+100/х²+х·(10/х)=36,
х²+10/х²+10=36,
х²+10/х²-26=0,
Пусть х²=к,
к+10/к-26=0,
к²-26к+10=0.
к=13+-√156≈13+-12,6.
к1=25,6; к2= 0,4 не рассматриваем
х=√25,6≈5,1.
Подставим в первое уравнение
х²+у²+ху=36,
26,01+у²+5,1у=36,
у²+5,1у-9,99=0,
у=1,5.длина диагоналей параллелограмма: 5,1·2=10,2; 1,5·2=3.
Площадь S= 0,5·10,2·3·sin60°=7.65/
ответ: 7,65.