Выберите неверное утверждение и запишите в ответе его номер 1) равнобедренный тругольник всегдп является остроугольным 2) если диагонали параллелограмма равны, то этот параллелограмм-прямоугольник 3) любые два диаметра окружности пересекаются
1. Расстоянием от точки до прямой является перпендикуляр из точки на прямую. То есть это длина МВ. В прямоугольном треугольнике МВ лежит против угла 30 градусов, поэтому равен половине гипотенузы, то есть 13. ответ МВ = 13.
2. Во втором нарисован прямоугольный треугольник у которого острые углы равны (по 45 градусов), значит равнобедренный. Опустим из вершины М перпендикуляр на сторону АВ. Так как треугольник равнобедренный, эта медиана будет и высотой, значит и искомым расстояние. У медианы, опущенной из прямого угла есть свойство, она равна частям, на которые делит гипотенузу. То есть, эта высота из вершины М имеет длину 15/2 = 7,5
Высота треугольника - перпендикуляр, опущенный из вершины угла треугольника на прямую, содержащая противоположную сторону.
Если ты в седьмом классе, то вот основные свойства, которые проходят в этом классе :
Всё высоты пересекаются в одной точке - ортоцентре.
В остроугольном треугольнике все высоты лежат внутри этого треугольника.
В тупоугольном треугольнике две высоты (которые проведены из вершин острых углов) лежат вне треугольника, а высота, проведённая из вершины тупого угла, лежит внутри.
В прямоугольном треугольнике две его высоты совпадают с его катетами. Также, высота, проведённая к гипотенузе, делит его на три треугольника с теми же острыми углами.
В равнобедренного треугольнике высота, проведённая к основанию - это биссектриса и
медиана.
В равностороннем треугольнике все высоты равны, а также совпадают со всеми медианами и биссектрисами.
Для восьмого класса :
Всё высоты треугольника обратно пропорциональны его сторонам (это значит, чем больше высота, тем меньше сторона, к которой проведена эта высота. Также верно и обратное утверждение.)
В прямоугольном треугольнике высота, проведённая к гипотенузе - среднее геометрической между проекциями катетов на эту гипотенузу.
Объяснение:
1. Расстоянием от точки до прямой является перпендикуляр из точки на прямую. То есть это длина МВ. В прямоугольном треугольнике МВ лежит против угла 30 градусов, поэтому равен половине гипотенузы, то есть 13. ответ МВ = 13.
2. Во втором нарисован прямоугольный треугольник у которого острые углы равны (по 45 градусов), значит равнобедренный. Опустим из вершины М перпендикуляр на сторону АВ. Так как треугольник равнобедренный, эта медиана будет и высотой, значит и искомым расстояние. У медианы, опущенной из прямого угла есть свойство, она равна частям, на которые делит гипотенузу. То есть, эта высота из вершины М имеет длину 15/2 = 7,5
ответ 7,5
Высота треугольника - перпендикуляр, опущенный из вершины угла треугольника на прямую, содержащая противоположную сторону.
Если ты в седьмом классе, то вот основные свойства, которые проходят в этом классе :
Всё высоты пересекаются в одной точке - ортоцентре.
В остроугольном треугольнике все высоты лежат внутри этого треугольника.
В тупоугольном треугольнике две высоты (которые проведены из вершин острых углов) лежат вне треугольника, а высота, проведённая из вершины тупого угла, лежит внутри.
В прямоугольном треугольнике две его высоты совпадают с его катетами. Также, высота, проведённая к гипотенузе, делит его на три треугольника с теми же острыми углами.
В равнобедренного треугольнике высота, проведённая к основанию - это биссектриса и
медиана.
В равностороннем треугольнике все высоты равны, а также совпадают со всеми медианами и биссектрисами.
Для восьмого класса :
Всё высоты треугольника обратно пропорциональны его сторонам (это значит, чем больше высота, тем меньше сторона, к которой проведена эта высота. Также верно и обратное утверждение.)
В прямоугольном треугольнике высота, проведённая к гипотенузе - среднее геометрической между проекциями катетов на эту гипотенузу.