Ввыпуклом четырёхугольнике abcd ab=bc cd=da точки k l m n середины сторон ab bc cd da соотвсетственно. докажите что диагонали четырёхугольника klmn равны, т.е. km=ln.
1) Cтроим параллелограмм АВТС. По свойству параллелограмма диагональ ВС делит его на два равных треугольника: ΔТСВ = ΔАВС
2) Приняв ВС за ось симметрии, построим ΔСВК симметричный ΔСВТ.
ΔСВТ = ΔСВК по построению.
При этом ∠СВК = 0,5 · (180° - 20°) =80°, ∠АВС = 20°, тогда
∠КВМ = 80° - 20° = 60°.
По условию ВМ = АС, а АС = ВТ и ВТ = ВК по построению. Тогда ВМ = ВК и ΔМВК равнобедренный. Поскольку угол при вершине В треугольника МВК равен 60°, то два угла при основании ВК равны по 60°, и ΔМВК - равносторонний.
Проекции НВ и НК сторон МВ и МК в Δ МВК являются и проекциями сторон СВ и СК равнобедренного ΔСВК. то точки Н, М и С лежат на общем перпендикуляре СН, являющимся высотой, медианой и биссектрисой обоих равнобедренных треугольников: ΔМВК и ΔСВК.
Поскольку МН - биссектриса угла КМВ. то ∠ВМН = ∠КМН = 30°.
∠АМС и ∠ВМН - вертикальные углы. поэтому ∠АМС = 30°
Объяснение:
А) Дано: ∆ABC - равнобедренный, BH - биссектрисса
Рассмотрим ∆ABH и ∆CBH
1) AB=BC (по условию)
2) <ABH=<CBH (т.к. BF - биссектрисаа)
3) BH - общая сторона
∆АBH=∆ACBH (по двум сторонам и углу между ними) => AH=HC => BG - медиана
<AHC=<BHC - смежные углы = > прямые => <AHC=<BHC=90° => CH - высота
Ч.т.д
Б) Дано: ∆ABC - равнобедренный, BH - медиана
Расмотрим ∆ABH и ∆CBH
1) AC=BC (по условию)
2) AH=CH (по условию, что CH медиана)
3) <BAH=<CBH (углы при основании)
∆ABH = ∆CBH (по двум сторонам и углу между ними)
Из равенства треугольников следует равенство соответсвующих углов.
<ABH=<CBH => CH - биссектриса
<AHB=<CHB - смежные => прямые => <AHB= <CHB = 90° => CH - высота треугольника ABC
Ч.т.д.
∠АМС = 30°
Объяснение:
Дано:
Треугольник АВС: ВС = АВ
ВМ = АС
∠АВС = 20°
Найти:
∠АМС
Cмотри прикреплённый рисунок
Сделаем дополнительные построения:
1) Cтроим параллелограмм АВТС. По свойству параллелограмма диагональ ВС делит его на два равных треугольника: ΔТСВ = ΔАВС
2) Приняв ВС за ось симметрии, построим ΔСВК симметричный ΔСВТ.
ΔСВТ = ΔСВК по построению.
При этом ∠СВК = 0,5 · (180° - 20°) =80°, ∠АВС = 20°, тогда
∠КВМ = 80° - 20° = 60°.
По условию ВМ = АС, а АС = ВТ и ВТ = ВК по построению. Тогда ВМ = ВК и ΔМВК равнобедренный. Поскольку угол при вершине В треугольника МВК равен 60°, то два угла при основании ВК равны по 60°, и ΔМВК - равносторонний.
Проекции НВ и НК сторон МВ и МК в Δ МВК являются и проекциями сторон СВ и СК равнобедренного ΔСВК. то точки Н, М и С лежат на общем перпендикуляре СН, являющимся высотой, медианой и биссектрисой обоих равнобедренных треугольников: ΔМВК и ΔСВК.
Поскольку МН - биссектриса угла КМВ. то ∠ВМН = ∠КМН = 30°.
∠АМС и ∠ВМН - вертикальные углы. поэтому ∠АМС = 30°